【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)的圖象上.若點A的坐標(biāo)為(-2,-2),則k的值為 。

【答案】3

【解析】

試題分析:點A的坐標(biāo)為(﹣2,﹣2),矩形ABCD的邊分別平行于坐標(biāo)軸,B點的橫坐標(biāo)為﹣2,D點的縱坐標(biāo)為﹣2,設(shè)D點坐標(biāo)為(a,﹣2),B點坐標(biāo)為(﹣2,b),則C點坐標(biāo)為(a,b),矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點O,直線BD的解析式可設(shè)為y=mx,把點D(a,﹣2),B點(﹣2,b)分別代入y=mx得,am=﹣2,﹣2m=b,a=,ab=(﹣2m)=4,點C(a,b)在反比例函數(shù)的圖象上,k+1=ab=4,k=3.故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,

1)若AE平分∠BAC,ADBC于點D,∠C=74°,∠B=46°,求∠DAE的度數(shù).

2)若AEABC的中線,BC=4,ABE的面積為4,EC=3DE,求ABC面積和ADE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級數(shù)學(xué)測試后,為了解學(xué)生學(xué)習(xí)情況,隨機抽取了九年級部分學(xué)生的數(shù)學(xué)成績進行統(tǒng)計,得到相關(guān)的統(tǒng)計圖表如下.

成績/

120﹣111

110﹣101

100﹣91

90以下

成績等級

A

B

C

D

請根據(jù)以上信息解答下列問題:

(1)這次統(tǒng)計共抽取了   名學(xué)生的數(shù)學(xué)成績,補全頻數(shù)分布直方圖;

(2)若該校九年級有1000名學(xué)生,請據(jù)此估計該校九年級此次數(shù)學(xué)成績在B等級以上(含B等級)的學(xué)生有多少人?

(3)根據(jù)學(xué)習(xí)中存在的問題,通過一段時間的針對性復(fù)習(xí)與訓(xùn)練,若A等級學(xué)生數(shù)可提高40%,B等級學(xué)生數(shù)可提高10%,請估計經(jīng)過訓(xùn)練后九年級數(shù)學(xué)成績在B等級以上(含B等級)的學(xué)生可達(dá)多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(每小題4分,共16分)

1

2)已知.求代數(shù)式的值.

3)先化簡,再求值,其中.

4)解分式方程:+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4個小長方形,然后按圖2的形狀拼成一個正方形.

(1)2中陰影部分的面積請用兩種方法表示: ;②_________.

(2)觀察圖2,請你寫出式子(mn)2,(mn)2,mn之間的等量關(guān)系: ;

(3)xy=-6xy2.75,求xy的值.

(4)觀察圖3,你能得到怎樣的代數(shù)恒等式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點,延長CE,BA交于點F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時,寫出BCCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列各式中,哪些是最簡二次根式?哪些不是?對不是最簡二次根式的進行化簡.

(1)

(2)

(3)

(4)

(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB=AD,∠1=∠2,以下條件中,不能推出△ABC≌△ADE的是( )

A. AE=AC B. ∠B=∠D C. BC=DE D. ∠C=∠E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線p: 的頂點為C,與x軸相交于A、B兩點(點A在點B左側(cè)),點C關(guān)于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.

查看答案和解析>>

同步練習(xí)冊答案