【題目】如圖,矩形的邊OA在x軸上,邊OC在y軸上,點B的坐標(biāo)為(10,8),沿直線OD折疊矩形,使點A正好落在BC上的E處,E點坐標(biāo)為(6,8),拋物線y=ax2+bx+c經(jīng)過O、A、E三點.
(1)求此拋物線的解析式;
(2)求AD的長;
(3)點P是拋物線對稱軸上的一動點,當(dāng)△PAD的周長最小時,求點P的坐標(biāo).
【答案】(1)y=;(2)AD=5;(3)(5,)
【解析】
試題(1)利用矩形的性質(zhì)和B點的坐標(biāo)可求出A點的坐標(biāo),再利用待定系數(shù)法可求得拋物線的解析式;(2)設(shè)AD=x,利用折疊的性質(zhì)可知DE=AD,在Rt△BDE中,利用勾股定理可得到關(guān)于x的方程,可求得AD的長;(3)由于O、A兩點關(guān)于對稱軸對稱,所以連接OD,與對稱軸的交點即為滿足條件的點P,利用待定系數(shù)法可求得直線OD的解析式,再由拋物線解析式可求得對稱軸方程,從而可求得P點坐標(biāo).
試題解析:(1)∵四邊形ABCD是矩形,B(10,8),
∴A(10,0), 又拋物線經(jīng)過A、E、O三點,把點的坐標(biāo)代入拋物線解析式可得,解得, ∴拋物線的解析式為y=﹣x2+x;
(2)由題意可知:AD=DE,BE=10﹣6=4,AB=8, 設(shè)AD=x,則ED=x,BD=AB﹣AD=8﹣x,
在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5, ∴AD=5;
(3)∵y=﹣x2+x, ∴其對稱軸為x=5, ∵A、O兩點關(guān)于對稱軸對稱, ∴PA=PO,
當(dāng)P、O、D三點在一條直線上時,PA+PD=PO+PD=OD,此時△PAD的周長最小,
如圖,連接OD交對稱軸于點P,則該點即為滿足條件的點P,
由(2)可知D點的坐標(biāo)為(10,5),
設(shè)直線OD解析式為y=kx,把D點坐標(biāo)代入可得5=10k,解得k=, ∴直線OD解析式為y=x,
令x=5,可得y=, ∴P點坐標(biāo)為(5,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖乙,和是有公共頂點的等腰直角三角形,,點P為射線BD,CE的交點.
如圖甲,將繞點A旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時,連接BD、BE,則下列給出的四個結(jié)論中,其中正確的是______.
若,,把繞點A旋轉(zhuǎn),
當(dāng)時,求PB的長;
求旋轉(zhuǎn)過程中線段PB長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條拋物線與的兩個交點、都在軸上,拋物線的頂點為.
(1)求拋物線的解析式;
(2)在軸正半軸上有一點,當(dāng)時,求的面積;
(3)判斷在軸上是否存在點,使點繞點順時針旋轉(zhuǎn),得到點恰好落在拋物線上?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
問題情境:在矩形ABCD中,點E為BC邊的中點,將△ABE沿直線AE翻折,使點B與點F重合,直線AF交直線CD于點G.
特例探究 實驗小組的同學(xué)發(fā)現(xiàn):
(1)如圖1,當(dāng)AB=BC時,AG=BC+CG,請你證明該小組發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)AB=BC=4時,求CG的長;
延伸拓展:(3)實知小組的同學(xué)在實驗小組的啟發(fā)下,進一步探究了當(dāng)AB∶BC=∶2時,線段AG,BC,CG之間的數(shù)量關(guān)系,請你直接寫出實知小組的結(jié)論:___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標(biāo)為.
(1)分別求出直線、雙曲線的函數(shù)表達式.
(2)求出點D的坐標(biāo).
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點P是線段AD上任意一點,點Q為BC上一點,且AP=CQ.
(1)求證:BP=DQ;
(2)若AB=4,且當(dāng)PD=5時四邊形PBQD為菱形.求AD為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
操作與發(fā)現(xiàn):
如圖,已知A,B兩點在直線CD的同一側(cè),線段AE,BF均是直線CD的垂線段,且BF在AE的右邊,AE=2BF,將BF沿直線CD向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線CD相交于點P,點G是AE的中點,連接BG.
探索與證明:求證:
(1)四邊形EFBG是矩形;
(2)△ABG∽△PBF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x﹣(m﹣2)=0有實數(shù)根.
(1)求m的取值范圍;
(2)若方程有一個根為x=1,求m的值及另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下,中學(xué)生完成數(shù)學(xué)家庭作業(yè)時,注意力指數(shù)隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).
(1)分別求出線段AB和雙曲線CD的函數(shù)關(guān)系式;
(2)若學(xué)生的注意力指數(shù)不低于40為高效時間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學(xué)家庭作業(yè)的高效時間是多少分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com