【題目】圓心O到直線l的距離為d,的半徑為R,若d,R是方程的兩個根,則直線和圓的位置關系是________;若d,R是方程的兩個根,則________時,直線與圓相切.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2﹣5x+4與x軸交于點A,B,與y軸交于點C,頂點為點P.
(1)求△ABP的面積;
(2)在該拋物線上是否存在點Q,使S△ABQ=8S△ABP?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是AC上一點,E是BD上一點,∠A=∠CBD=∠DCE.
(1)求證:△ABC∽△CDE;
(2)若BD=3DE,試求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某消防隊在一居民樓前進行演習,消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°和65°,點A距地面2.5米,點B距地面10.5米.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求PD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是⊙O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點C
(I)若∠ADE=25°,求∠C的度數(shù)
(II)若AB=AC,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,點是拋物線的頂點.
(1)求拋物線的解析式.
(2)點是軸負半軸上的一點,且,點在對稱軸右側的拋物線上運動,連接,與拋物線的對稱軸交于點,連接,當平分時,求點的坐標.
(3)直線交對稱軸于點,是坐標平面內(nèi)一點,請直接寫出與全等時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)經(jīng)過點A(1,0)和點B(0,﹣2),且頂點在第三象限,記m=a﹣b+c,則m的取值范圍是( )
A. ﹣1<m<0B. ﹣2<m<0C. ﹣4<m<﹣2D. ﹣4<m<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動.
(1)P、Q兩點從出發(fā)開始到幾秒時,四邊形APQD為長方形?
(2)P、Q兩點從出發(fā)開始到幾秒時?四邊形PBCQ的面積為33cm2;
(3)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com