【題目】在平面直角坐標(biāo)系中,若點(diǎn)和點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱,則稱點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn).
(1)如圖1,點(diǎn).
①若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則點(diǎn)的坐標(biāo)為________;
②若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則的值為_______;
③若點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn),則直線的表達(dá)式為__________;
(2)如圖2,的半徑為1.若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直績(jī):的二次對(duì)稱點(diǎn),且點(diǎn)在射線上,的取值范圍是________;
(3)是軸上的動(dòng)點(diǎn),的半徑為2,若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),且點(diǎn)在軸上,求的取值范圍.
【答案】(1)①(4,-1);②2;③y=-x+1;(2);(3).
【解析】
(1)數(shù)形結(jié)合方法,直接結(jié)合圖形求出即可;
(2)當(dāng)M(-1,0)時(shí),可求得b的最小值為,當(dāng)點(diǎn)時(shí),可求得b的最大值為;
(3)確定t取最大值或最小值時(shí),唯一對(duì)稱點(diǎn)的位置,反過(guò)來(lái)計(jì)算即可.
(1)如圖1,
①∵A(0,1);
∴點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′(0,-1),點(diǎn)A′(0,-1)關(guān)于直線l1:x=2的對(duì)稱點(diǎn)為B(4,-1),
故答案為:(4,-1),
②∵A(0,1),
∴點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′(0,-1),點(diǎn)A′(0,-1)關(guān)于直線l2:y=2的對(duì)稱點(diǎn)為C(0,5),
故答案為:2,
③∵點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′(0,-1),點(diǎn)A′(0,-1)與點(diǎn)D(2,1)關(guān)于直線l3對(duì)稱,連接A′D,
∴直線l3⊥A′D,且平分A′D,易求得A′D的中點(diǎn)坐標(biāo)為(1,0),易知:AD=AA′,
∴經(jīng)過(guò)(0,1),(1,0)兩點(diǎn)的直線即為直線l3,
∴y=-x+1;
故答案為:y=-x+1;
(2)如圖2,
當(dāng)M(-1,0)時(shí),可求得b的最小值為,
當(dāng)點(diǎn)時(shí),可求得b的最大值為,
∴,
故答案為:;
(3)∵E(0,t)為⊙E的圓心,半徑為2,過(guò)點(diǎn)E作EN′⊥l5交x軸于點(diǎn)N′,
設(shè)直線l5: 與x軸交點(diǎn)為M,則,當(dāng)t取最大值時(shí),依題意有:
,
解得:
設(shè)⊙E與y軸交點(diǎn)中最上方點(diǎn)為P,過(guò)P作PN″⊥l5交x軸于點(diǎn)N″,當(dāng)t取最小值時(shí)有:
,
解得:t=1
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會(huì)積極參與疫情防控工作,某市為了盡快完成100萬(wàn)只口罩的生產(chǎn)任務(wù),安排甲、乙兩個(gè)大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨(dú)立完成60萬(wàn)只口罩的生產(chǎn)任務(wù)時(shí),甲廠比乙廠少用5天.問(wèn)至少應(yīng)安排兩個(gè)工廠工作多少天才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形ABC中,直角邊,,設(shè)P、Q分別為AB,BC上的動(dòng)點(diǎn),點(diǎn)P自點(diǎn)A沿AB方向向點(diǎn)B作勻速移動(dòng)且速度為每秒2cm,同時(shí)點(diǎn)Q自點(diǎn)B沿BC方向向點(diǎn)C作勻速移動(dòng)且速度為每秒1cm,當(dāng)P點(diǎn)到達(dá)B點(diǎn)時(shí),Q點(diǎn)就停止移動(dòng).設(shè)P,Q移動(dòng)的時(shí)間t秒.
(1)寫出的面積S()與時(shí)間t(s)之間的函數(shù)表達(dá)式,并寫出t的取值范圍.
(2)當(dāng)t為何值時(shí),為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D.過(guò)點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=6,BC=8,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果基地為了選出適應(yīng)市場(chǎng)需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個(gè)品種的小西紅柿秧苗各300株分別種植在甲、乙兩個(gè)大棚.對(duì)市場(chǎng)最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性進(jìn)行了抽樣調(diào)査,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù) 從甲、乙兩個(gè)大棚各收集了25株秧苗上的小西紅柿的個(gè)數(shù):
甲 26 32 40 51 44 74 44 63 73 74 81 54 62
41 33 54 43 34 51 63 64 73 64 54 33
乙 27 35 46 55 48 36 47 68 82 48 57 66 75
27 36 57 57 66 58 61 71 38 47 46 71
整理數(shù)據(jù) 按如下分組整理、描述這兩組樣本數(shù)據(jù):
(說(shuō)明:45個(gè)以下為產(chǎn)量不合格,45個(gè)及以上為產(chǎn)量合格,其中45~65個(gè)為產(chǎn)量良好,65~85個(gè)為產(chǎn)量?jī)?yōu)秀)分析數(shù)據(jù) 組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 眾數(shù) | 方差 |
甲 | 53 | 54 | 236.24 |
乙 | 53 | 57 | 215.04 |
得出結(jié)論 a.估計(jì)甲大棚產(chǎn)量良好的秧苗數(shù)為________株;b.可以推斷出________大棚的小西紅柿秧苗品種更適應(yīng)市場(chǎng)需求,理由為________________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果基地為了選出適應(yīng)市場(chǎng)需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個(gè)品種的小西紅柿秧苗各300株分別種植在甲、乙兩個(gè)大棚.對(duì)于市場(chǎng)最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù) 從甲、乙兩個(gè)大棚各收集了25株秧苗上的小西紅柿的個(gè)數(shù):
甲 26 32 40 51 44 74 44 63 73 74 81 54 62 41 33 54 43 34 51 63 64 73 64 54 33
乙 27 35 46 55 48 36 47 68 82 48 57 66 75 27 36 57 57 66 58 61 71 38 47 46 71
整理、描述數(shù)據(jù) 按如下分組整理、描述這兩組樣本數(shù)據(jù)
個(gè)數(shù) 株數(shù) 大棚 | ||||||
甲 | 5 | 5 | 5 | 5 | 4 | 1 |
乙 | 2 | 4 | 6 | 2 |
(說(shuō)明:45個(gè)以下為產(chǎn)量不合格,45個(gè)及以上為產(chǎn)量合格,其中45~65個(gè)為產(chǎn)量良好,65~85個(gè)為產(chǎn)量?jī)?yōu)秀)
分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 眾數(shù) | 方差 |
甲 | 53 | 54 | 3047 |
乙 | 53 | 57 | 3022 |
得出結(jié)論:(1)估計(jì)乙大棚產(chǎn)量?jī)?yōu)秀的秧苗數(shù)為__________株;
(2)可以推斷出__________大棚的小西紅柿秧苗品種更適應(yīng)市場(chǎng)需求,理由為_____________________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一個(gè)三角形繞其中一個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn)并放大或縮。ㄟ@個(gè)頂點(diǎn)不變),我們把這樣的三角形
運(yùn)動(dòng)稱為三角形的T-變換,這個(gè)頂點(diǎn)稱為T-變換中心,旋轉(zhuǎn)角稱為T-變換角,三角形與原三角形的對(duì)應(yīng)邊
之比稱為T-變換比;已知△在直角坐標(biāo)平面內(nèi),點(diǎn),,,將△進(jìn)
行T-變換,T-變換中心為點(diǎn),T-變換角為60°,T-變換比為,那么經(jīng)過(guò)T-變換后點(diǎn)所對(duì)應(yīng)的點(diǎn)的
坐標(biāo)為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)P,過(guò)A作直線AC⊥PC交⊙O于另一點(diǎn)D,連接PA、PB.
(1)求證:AP平分∠CAB;
(2)若P是直徑AB上方半圓弧上一動(dòng)點(diǎn),⊙O的半徑為2,則
①當(dāng)弦AP的長(zhǎng)是_____時(shí),以A,O,P,C為頂點(diǎn)的四邊形是正方形;
②當(dāng)的長(zhǎng)度是______時(shí),以A,D,O,P為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的邊與經(jīng)過(guò)三點(diǎn)的相切.
(1)求證:弧弧;
(2)如圖2,延長(zhǎng)交于點(diǎn),連接若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com