如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點都在格點上,建立平面直角坐標系.
(1)點A的坐標為______,點C的坐標為______.
(2)將△ABC向左平移7個單位,請畫出平移后的△A1B1C1.若M為△ABC內的一點,其坐標為(a,b),則平移后點M的對應點M1的坐標為______.
(3)以原點O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應邊的比為1:2.請在網(wǎng)格內畫出△A2B2C2,并寫出點A2的坐標:______.

【答案】分析:(1)直接根據(jù)圖形即可寫出點A和C的坐標;
(2)找出三角形平移后各頂點的對應點,然后順次連接即可;根據(jù)平移的規(guī)律即可寫出點M平移后的坐標;
(3)根據(jù)位似變換的要求,找出變換后的對應點,然后順次連接各點即可,注意有兩種情況.
解答:解:(1)A點坐標為:(2,8),C點坐標為:(6,6);

(2)所畫圖形如下所示,其中△A1B1C1即為所求,根據(jù)平移規(guī)律:左平移7個單位,可知M1的坐標(a-7,b);

(3)所畫圖形如下所示,其中△A2B2C2即為所求,點A2的坐標為(1,4)或(-1,-4).

點評:本題考查了旋轉變換和位似變換后圖形的畫法,解題關鍵是根據(jù)變換要求找出變換后的對應點,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(2,-1).
(1)把△ABC先向上平移4個單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請在網(wǎng)格中畫出△A2B2C2,并寫出C2的坐標.
(2)以原點為位似中心,在第二象限內畫出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫出C3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連續(xù)為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形,在建立平面直角坐標系后,點B的坐標為(-1,-1)把△ABC繞點C按順時針方向旋轉90°后得到△A1B1C,畫出△A1B1C的圖形,并寫出點B1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(-1,0)
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小正方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上,O、M都在格點上.
(1)畫出△ABC關于直線OM對稱的△A1B1C1;
(2)畫出將△ABC繞點O按順時針方向旋轉90°后得到的△A2B2C2
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形碼?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,A(-1,5),B(-1,0),C(-4,3).
(1)畫出△ABC關于y軸對稱的△A1B1C1;(其中A1、B1、C1是A、B、C的對應點,不寫畫法)
(2)寫出A1、B1、C1的坐標;
(3)求出△A1B1C1的面積.

查看答案和解析>>

同步練習冊答案