若拋物線與直線y=x+m只有一個(gè)公共點(diǎn),則m的值為   
【答案】分析:聯(lián)立兩函數(shù)解析式,消掉y,得到關(guān)于x的一元二次方程,然后利用根的判別式△=0列式計(jì)算即可得解.
解答:解:聯(lián)立拋物線與直線解析式消掉y得,x2=x+m,
整理得,x2-2x-2m=0,
∵拋物線與直線只有一個(gè)公共點(diǎn),
∴△=b2-4ac=(-2)2-4×1×(-2m)=0,
解得m=-
故答案為:-
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì),利用根的判別式列出方程是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:a,b,c是△ABC的三邊長,c為整數(shù),拋物線y=x2-(a+b)x+c2-8a-8與x軸相交于點(diǎn)M,N(點(diǎn)M在N的左側(cè)),頂點(diǎn)為P,點(diǎn)(a-bsinC,m)與點(diǎn)(asinC-b,m)關(guān)于y軸對稱.
(1)判斷△ABC的形狀;
(2)若拋物線與直線y=x-14相交于點(diǎn)P和D(6,-8),在拋物線上求作一點(diǎn)Q,使∠QMP=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)是(n,0)(n>0),拋物線y=-x2+bx+c經(jīng)過原點(diǎn)O和點(diǎn)P.已知正方形ABCD的三個(gè)頂點(diǎn)為A(2,2),B(3,2),D(2,3).
(1)求c,b的值,并寫出拋物線對稱軸及y的最大值(用含有n的代數(shù)式表示);
(2)若拋物線與直線AD交于點(diǎn)N,求n為何值時(shí),△NPO的面積為1;
(3)若拋物線經(jīng)過正方形區(qū)域ABCD(含邊界),請直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•葫蘆島)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)是(n,0)(n>0),拋物線y=-x2+bx+c經(jīng)過原點(diǎn)O和點(diǎn)P.已知正方形ABCD的三個(gè)頂點(diǎn)為A(2,2),B(3,2),D(2,3).
(1)求c,b并寫出拋物線對稱軸及y的最大值(用含有n的代數(shù)式表示);
(2)求證:拋物線的頂點(diǎn)在函數(shù)y=x2的圖象上;
(3)若拋物線與直線AD交于點(diǎn)N,求n為何值時(shí),△NPO的面積為1;
(4)若拋物線經(jīng)過正方形區(qū)域ABCD(含邊界),請直接
3≤n≤4
3≤n≤4
寫出n的取值范圍.
(參考公式:y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年度第一學(xué)期期中初三數(shù)學(xué)試卷(解析版) 題型:解答題

已知:a,b,c是△ABC的三邊長,c為整數(shù),拋物線y=x2-(a+b)x+c2-8a-8與x軸相交于點(diǎn)M,N(點(diǎn)M在N的左側(cè)),頂點(diǎn)為P,點(diǎn)(a-bsinC,m)與點(diǎn)(asinC-b,m)關(guān)于y軸對稱.
(1)判斷△ABC的形狀;
(2)若拋物線與直線y=x-14相交于點(diǎn)P和D(6,-8),在拋物線上求作一點(diǎn)Q,使∠QMP=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年遼寧省葫蘆島市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)是(n,0)(n>0),拋物線y=-x2+bx+c經(jīng)過原點(diǎn)O和點(diǎn)P.已知正方形ABCD的三個(gè)頂點(diǎn)為A(2,2),B(3,2),D(2,3).
(1)求c,b并寫出拋物線對稱軸及y的最大值(用含有n的代數(shù)式表示);
(2)求證:拋物線的頂點(diǎn)在函數(shù)y=x2的圖象上;
(3)若拋物線與直線AD交于點(diǎn)N,求n為何值時(shí),△NPO的面積為1;
(4)若拋物線經(jīng)過正方形區(qū)域ABCD(含邊界),請直接______寫出n的取值范圍.
(參考公式:y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-,

查看答案和解析>>

同步練習(xí)冊答案