【題目】已知如圖,折疊長方形的一邊AD,使點D落在BC邊的點F處,已知AB=5厘米,BC=13厘米,求線段CF,CE的長.
【答案】CF=1厘米,CE=厘米.
【解析】
根據(jù)矩形的對邊相等可得AD=BC=13,根據(jù)翻折變換的性質(zhì)可得AF=AD=13,EF=DE,然后利用勾股定理列式計算求出BF,求出CF=BC-BF=1;設(shè)CE=x,則EF=DE=5-x,再利用勾股定理列方程求解即可得出CE的長.
解:∵四邊形ABCD是長方形,
∴AD=BC=13,AB=CD=5,∠B=∠C=90°,
∵折疊長方形一邊AD,點D落在BC邊的點F處,
∴AF=AD=13,EF=DE,
在Rt△ABF中,根據(jù)勾股定理得,BF==12,
∴CF=BC﹣BF=13﹣12=1(厘米),
設(shè)CE=x,則EF=DE=5﹣x,
在Rt△CEF中,根據(jù)勾股定理得,CF2+CE2=EF2,
即12+x2=(5﹣x)2,
解得:x=,
即CE=厘米.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AC=BC,點D,E分別在邊AB, BC 上,把△BDE沿直線DE翻折,使點B落在點B'處,DB',EB'分別交AC于點F,G,若∠ADF=80°,則∠EGC的大小為( ).
A.60°B.70°
C.80°D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,的三個頂點的坐標分別是,,.
(1)作出向左平移個單位長度,再向下平移個單位長度后得到的,并寫出點的坐標.
(2)作出關(guān)于直線對稱的,使點的對應(yīng)點為.
(3)寫出直線的函數(shù)解析式為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某高樓OB上有一旗桿CB,我校數(shù)學興趣小組的同學準備利用所學的三角函數(shù)知識估測該高樓的高度,由于有其他建筑物遮擋視線不便測量,所以測量員沿坡度i=1:的山坡從坡腳的A處前行50米到達P處,測得旗桿頂部C的仰角為45°,旗桿底部B的仰角為37°(測量員的身高忽略不計),已知旗桿高BC=15米,則該高樓OB的高度為( 。┟祝▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. 45 B. 60 C. 70 D. 85
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC的度數(shù)是( )
A.128°B.118°C.108°D.98°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABC中,∠C=90,BD是ABC的一條角一平分線,點O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形,
(1)求證:點O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系xOy中,A(3,4),B(1,2),C(5,1).
(1)作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(2)寫出△A1B1C1的頂點坐標;
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】吉祥超市準備購進甲、乙兩種綠色袋裝食品共800袋.甲、乙兩種綠色袋裝食品的進價和售價如表.已知:用2000元購進甲種袋裝食品的數(shù)量與用1600元購進乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進價(元/袋) | m | m﹣2 |
售價(元/袋) | 20 | 13 |
(1)求m的值;
(2)假如購進的甲、乙兩種綠色袋裝食品全部賣出,所獲總利潤不少于5200元,且不超過5280元,問該超市有幾種進貨方案?(利潤=售價﹣進價)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com