【題目】如圖,在梯形ABCD中,AB∥CD, CD=6,BC=4,∠ABD =∠C,P是CD上的一個動點(P不與點C點D重合),且滿足條件:∠BPE =∠C, 交BD于點E.
(1) 求證:△BCP∽△PDE;
(2)如果CP= x , BE=y,求y與x之間的函數(shù)關系式;
(3)P點在運動過程中,△BPE能否成為等腰三角形,若能,求 x的值 ,若不能,說明理由.
【答案】(1)證明見解析(2) (3)當x=2或 時,△BPE為等腰三角形
【解析】(1)根據(jù)已知條件先得出∠BPD =∠PBC+∠C,然后求出∠PBC =∠EPD即可得證;
(2)由(1)的結論得出,把CP= x ,,BE=y,BD=BC=4,CD=6代入此式即可求出y與x之間的函數(shù)關系式;(3)分當BP=PE,則△BCP≌△PDE,求出x,當BE=PE,證出△BEP∽△CBD求出x;當BP=BE,可推出∠BPE=∠PEB>∠CDB,矛盾.
解:(1)證明:因為AB∥DC,所以∠ABD=∠BDC
因為∠ABD =∠C,所以∠BDC =∠C
因為∠BPD =∠BPE+∠EPD
∠BPD =∠PBC+∠C
又因為∠BPE =∠C
所以∠PBC =∠EPD
所以△BCP∽△PDE
(2) 因為△BCP∽△PDE
所以,
因為CP= x , BE=y,BD=BC=4,CD=6
所以DP= 6 - x , DE= 4 – y
所以,
所以
(3)(ⅰ)若BP=PE,則△BCP≌△PDE,
所以PD=BC=4,所以x=2
(ⅱ)若BE=PE,則∠BPE=∠PBE=∠C=∠CDB,
所以△BEP∽△CBD,PE:PB=BC:CD=2:3
又因為PD:BC=PE:PB
即(6-x):4=2:3,
所以x=
(ⅲ)若BP=BE,則∠BPE=∠PEB>∠CDB,矛盾.
所以,當x=2或時,△BPE為等腰三角形.
“點睛”此題考查了相似三角形的判定(平行于三角形一邊的直線截另兩邊所得三角形與原三角形相似)與性質(相似三角形的對應邊成比例).此題很簡單,解題時要注意細心.
科目:初中數(shù)學 來源: 題型:
【題目】已知一條拋物線經(jīng)過A(0,3),B(4,6)兩點,對稱軸是x=.
(1)求這條拋物線的關系式.
(2)證明:這條拋物線與x軸的兩個交點中,必存在點C,使得對x軸上任意點D都有AC+BC≤AD+BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直線y=kx+2與x軸的正半軸相交于點A(t,0)、與y軸相交于點B,點C在第三象限內,且AC⊥AB,AC=2AB.
(1)當t=1時,求直線BC的表達式;
(2)點C落在直線:y=-3x-10上,求直線CA的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若平面直角坐標系內有一點M,且M到x軸的距離為1,到y軸的距離為2,則點M的坐標不可能是( 。
A. (1,-2)B. (-2,1)C. (2,-1)D. (2,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,假命題是( )
A. 直角三角形的兩個銳角互余
B. 三角形的一個外角大于任何一個內角
C. 有一個角為60°的等腰三角形是等邊三角形
D. 三內角之比為1︰2︰3的三角形是直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形內有一點,它到三角形三邊的距離都相等,同時與三角形三個頂點的距離也相等,則這個三角形一定是( )
A. 等腰三角形 B. 等腰直角三角形
C. 等邊三角形 D. 以上都不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com