【題目】在如圖所示的平面直角坐標系中,一只螞蟻從A點出發(fā),沿著A-B-C-D-A…循環(huán)爬行,其中A點坐標為(1,-1),B點坐標為(-1,-1),C點坐標為(-1,3),D點坐標為(1,3),當螞蟻爬了2 018個單位長度時,它所處位置的坐標為_____________.
【答案】(-1,-1)
【解析】設(shè)螞蟻跑了n個單位時,它所處位置為點Pn(n為自然數(shù)),觀察,發(fā)現(xiàn)規(guī)律:P1(0,-1),P2(-1,-1),P3(-1,0),P4(-1,1),P5(-1,2),P6(-1,3),P7(0,3),P8(1,3),P9(1,2),P10(1,1),P11(1,0),P12(1,-1),P13(0,-1).
∴P12n+1(0,-1),P12n+2(-1,-1),P12n+3(-1,0),P12n+4(-1,1),P12n+5(-1,2),P12n+6(-1,3),P12n+7(0,3),P12n+8(1,3),P12n+9(1,2),P12n+10(1,1),P12n+11(1,0),P12n+12(1,-1).
∵2018=12×168+2,
∴P2018(-1,-1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學(xué)們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是⊙O外一點,PA、PB分別與⊙O相切于點A、B,點C是劣弧AB上任意一點,經(jīng)過點C作⊙O的切線,分別交PA、PB于點D、E.若PA=4,則△PDE的周長是( )
A.4
B.8
C.12
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務(wù)的負責人,你認為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)有一塊空地需要綠化,某綠化組承擔了此項任務(wù),綠化組工作一段時間后,提高了工作效率,該綠化組完成的綠化面積 S(單位:m2)與工作時間 t(單位:h)之間的函數(shù)關(guān)系 如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是( )
A. 150 m2 B. 300 m2 C. 330 m2 D. 450 m2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.
(1)化簡:2B﹣A;
(2)已知﹣a|x﹣2|b2與aby的同類項,求2B﹣A的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(-3pq)2;
(2)-x3+(-4x)2x;
(3)(m4m÷m2n)·mn;
(4)(-2)-2-32÷(3.144+π)0;
(5)(a2)3·(a2)4÷(-a2)5;
(6)[-2-3-8-1×(-1)-2]×.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com