【題目】如圖,在中,點(diǎn),分別為,的中點(diǎn),連接,作與相切于點(diǎn),在邊上取一點(diǎn),使,連接.
(1)判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng),時(shí),求的半徑.
【答案】(1)直線與相切,理由見(jiàn)解析;(2)的半徑為1.
【解析】
(1)如圖(見(jiàn)解析),先根據(jù)圓的切線的性質(zhì)、中位線定理得出的半徑OE等于CD,再根據(jù)三角形全等的判定定理與性質(zhì)可得,然后由圓的切線的判定即可得;
(2)設(shè)的半徑為,則,先根據(jù)線段中點(diǎn)的定義得出,再根據(jù)勾股定理可得AC的長(zhǎng),然后根據(jù)中位線定理可得OD的長(zhǎng),最后在中利用勾股定理即可得.
(1)直線與相切,理由如下:
如圖,連接OE,過(guò)點(diǎn)O作于點(diǎn)P
相切于點(diǎn)
,OE為的半徑
點(diǎn),分別為,的中點(diǎn)
四邊形ODCE是矩形
在和中,
,即OP為的半徑
則直線與相切;
(2)設(shè)的半徑為,則
點(diǎn),分別為,的中點(diǎn)
在中,
由(1)已證:
在中,,即
解得或(不符題意,舍去)
故的半徑為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO為1.2米,當(dāng)車門打開角度∠AOB為40°時(shí),車門是否會(huì)碰到墻?______;(填“是”或“否”)請(qǐng)簡(jiǎn)述你的理由_______.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線與拋物線交于兩點(diǎn),且點(diǎn)的橫坐標(biāo)是點(diǎn)的橫坐標(biāo)是則以下結(jié)論:
①時(shí),直線與拋物線的函數(shù)值都隨著的增大而增大;②AB的長(zhǎng)度可以等于5;③有可能成為等邊三角形;④當(dāng)時(shí),時(shí),其中正確的結(jié)論是( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長(zhǎng)線)于點(diǎn).
當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段和之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段和之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A、B城往C、D兩鄉(xiāng)運(yùn)肥料的平均費(fèi)用如下表. 現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
A城(出) | B城(出) | |
C鄉(xiāng)(人) | 20元/噸 | 15元/噸 |
D鄉(xiāng)(人) | 25元/噸 | 30元/噸 |
(1)A城和B城各多少噸肥料?
(2)設(shè)從B城運(yùn)往D鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求y與x之間的函數(shù)關(guān)系,并寫出自變量x的取值范圍;
(3)由于更換車型,使B城運(yùn)往D鄉(xiāng)的運(yùn)費(fèi)每噸減少a元(a>0),其余路線運(yùn)費(fèi)不變,若C、D兩鄉(xiāng)的總運(yùn)費(fèi)最小值不少于10040元,求a的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一張直角三角形彩色紙,,30,40,于點(diǎn).將斜邊上的高進(jìn)行五等分,然后裁出4張寬度相等的長(zhǎng)方形紙條.則這4張紙條的面積和是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點(diǎn)B旋轉(zhuǎn)得到矩形A'BC'D,點(diǎn)A恰好落在矩形ABCD的邊CD上,則AD掃過(guò)的部分(即陰影部分)面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)是斜邊上一點(diǎn),作,過(guò)點(diǎn)作交于,聯(lián)結(jié).
(1)求證:
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:有這樣一個(gè)問(wèn)題:關(guān)于的一元二次方程有兩個(gè)不相等的且非零的實(shí)數(shù)根探究,,滿足的條件.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過(guò)程:①設(shè)一元二次方程對(duì)應(yīng)的二次函數(shù)為;
②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中,,滿足的條件,列表如下:
方程根的幾何意義:
方程兩根的情況 | 對(duì)應(yīng)的二次函數(shù)的大致圖象 | ,,滿足的條件 |
方程有兩個(gè)不相等的負(fù)實(shí)根 | ||
____________ | ||
方程有兩個(gè)不相等的正實(shí)根 | ____________ | ____________ |
(1)參考小明的做法,把上述表格補(bǔ)充完整;
(2)若一元二次方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com