【題目】已知:在Rt△ABC中,∠ACB=90°,AC=BC,D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE.
(1)依題意補(bǔ)全圖形;
(2)若∠ACD=α,用含α的代數(shù)式表示∠DEB;
(3)若△ACD的外心在三角形的內(nèi)部,請直接寫出α的取值范圍.
【答案】(1)作圖見解析;(2)90°﹣α;(3)45°<α<90°.
【解析】
(1)依據(jù)幾何語言進(jìn)行作圖即可;
(2)依據(jù)△ACD≌△BCE,即可得到∠CBE=∠A,再根據(jù)三角形內(nèi)角和定理,即可用含α的代數(shù)式表示∠DEB;
(3)根據(jù)銳角三角形的外心位于三角形內(nèi)部,即可得出α的取值范圍.
解:(1)如圖,CE、BE、DE為所作;
(2)∵將線段CD繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn)90°得到線段CE,
∴∠DCE=90°,CD=CE
∵∠ACB=90°,
∴∠ACD=∠BCE=α,
在△ACD和△BCE中,
,
∴△ACD≌△BCE (SAS),
∴∠CBE=∠A.
∵∠ACB=90°,AC=BC
∴∠A=45°
∴∠CBE=45°
∵∠DCE=90°,CD=CE
∴∠CED=45°,
在△BCE中,∠BCE=∠ACD=α.
∴∠DEB=180°﹣α﹣45°﹣45°=90°﹣α.
(3)∵△ACD的外心在三角形的內(nèi)部,
∴△ACD是銳角三角形,
∴∠ACD<90°,∠ADC<90°,
又∵∠A=45°,
∴∠ACD>45°,
∴45°<α<90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全國各地都在推行新型農(nóng)村醫(yī)療合作制度.南充市也正在推行:村民只要每人每年交元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費(fèi),年終時(shí)可得到按一定比例返回的返回款.小東與同學(xué)隨機(jī)調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計(jì)圖,請根據(jù)以下信息解答問題:
(1)本次調(diào)查了多少村民?被調(diào)查的村民中,有多少人參加合作醫(yī)療得到了返回款?
(2)該鎮(zhèn)若有個(gè)村民,請你估計(jì)有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到人,假設(shè)這兩年的年增長率相同,求這個(gè)年增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線為一、三象限角平分線,點(diǎn)關(guān)于軸的對稱點(diǎn)稱為的一次反射點(diǎn),記作;關(guān)于直線的對稱點(diǎn)稱為點(diǎn)的二次反射點(diǎn),記作.
例如,點(diǎn)的一次反射點(diǎn)為,二次反射點(diǎn)為.
根據(jù)定義,回答下列問題:
(1)點(diǎn)的一次反射點(diǎn)為__________,二次反射點(diǎn)為____________;
(2)當(dāng)點(diǎn)在第一象限時(shí),點(diǎn),,中可以是點(diǎn)的二次反射點(diǎn)的是___________;
(3)若點(diǎn)在第二象限,點(diǎn),分別是點(diǎn)的一次、二次反射點(diǎn),為等邊三角形,求射線與軸所夾銳角的度數(shù).
(4)若點(diǎn)在軸左側(cè),點(diǎn),分別是點(diǎn)的一次、二次反射點(diǎn),是等腰直角三角形,請直接寫出點(diǎn)在平面直角坐標(biāo)系中的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn)連接,已知,且,
(1)求拋物線的解析式;
(2)若點(diǎn)為直線下方拋物線上一動(dòng)點(diǎn),過點(diǎn)作軸交于點(diǎn),連接
①若,求此時(shí)點(diǎn)的坐標(biāo);
②若點(diǎn)關(guān)于直線的對稱點(diǎn)恰好落在軸上,求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON及其邊上一點(diǎn)A,以點(diǎn)A為圓心,AO長為半徑畫弧,分別交OM,ON于點(diǎn)B和C,再以點(diǎn)C為圓心,AC長為半徑畫弧,恰好經(jīng)過點(diǎn)B,錯(cuò)誤的結(jié)論是( ).
A.B.∠OCB=90°C.∠MON=30°D.OC=2BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時(shí)期的數(shù)學(xué)家劉徽(263年左右)首創(chuàng)“割圓術(shù)”,所謂“割圓術(shù)”就是利用圓內(nèi)接正多邊形無限逼近圓來確定圓周率,劉徽計(jì)算出圓周率.
劉徽從正六邊形開始分割圓,每次邊數(shù)成倍增加,依次可得圓內(nèi)接正十二邊形,圓內(nèi)接正二十四邊形,…,割的越細(xì),圓的內(nèi)接正多邊形就越接近圓.設(shè)圓的半徑為R,圓內(nèi)接正六邊形的周長,計(jì)算;圓內(nèi)接正十二邊形的周長,計(jì)算;請寫出圓內(nèi)接正二十四邊形的周長________,計(jì)算________.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面給出六個(gè)函數(shù)解析式:,,,,,.
小明根據(jù)學(xué)習(xí)二次函數(shù)的經(jīng)驗(yàn),分析了上面這些函數(shù)解析式的特點(diǎn),研究了它們的圖象和性質(zhì)。下面是小明的分析和研究過程,請補(bǔ)充完整:
(1)觀察上面這些函數(shù)解析式,它們都具有共同的特點(diǎn),可以表示為形如_______,其中x為自變量;
(2)如圖,在平面直角坐標(biāo)系中,畫出了函數(shù)的部分圖象,用描點(diǎn)法將這個(gè)函數(shù)的圖象補(bǔ)充完整;
(3)對于上面這些函數(shù),下列四個(gè)結(jié)論:
①函數(shù)圖象關(guān)于y軸對稱
②有些函數(shù)既有最大值,同時(shí)也有最小值
③存在某個(gè)函數(shù),當(dāng)(m為正數(shù))時(shí),y隨x的增大而增大,當(dāng)時(shí),y隨x的增大而減小
④函數(shù)圖象與x軸公共點(diǎn)的個(gè)數(shù)只可能是0個(gè)或2個(gè)或4個(gè)
所有正確結(jié)論的序號是________;
(4)結(jié)合函數(shù)圖象,解決問題:若關(guān)于x的方程有一個(gè)實(shí)數(shù)根為3,則該方程其它的實(shí)數(shù)根為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)將△ABC向下平移5個(gè)單位再向右平移1個(gè)單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)P(a,b)是△ABC的邊AC上一點(diǎn),請直接寫出經(jīng)過兩次變換后在△A2B2C2中對應(yīng)的點(diǎn)P2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com