【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
⑴請你補全這個輸水管道的圓形截面;
⑵若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】(1)學校“圓周率”數(shù)學社團遇到這樣一個題目:
如圖1,在中,點在線段上, ,求的長.
經(jīng)過社團成員討論發(fā)現(xiàn),過點作,交的延長線于點,通過構(gòu)造就可以解決問題(如圖2). 請回答:_______,______;
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形中,對角線與相交于點,,,,,求的長及四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:
①以點O為坐標原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;
②根據(jù)圖形提供的信息,只借助直尺確定該圓弧所在圓的圓心D,并連接AD、CD.(保留作圖痕跡,不寫作法)
(2)請在(1)的基礎(chǔ)上,完成下列填空與計算:
①寫出點的坐標:C 、D ;
②⊙D的半徑= ;(結(jié)果保留根號)
③求扇形ADC的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加快5G網(wǎng)絡建設,某移動通信公司在一個坡度為2:1的山腰上建了一座5G信號通信塔AB,在距山腳C處水平距離39米的點D處測得通信塔底B處的仰角是35°,測得通信塔頂A處的仰角是49°,(參考數(shù)據(jù):sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),則通信塔AB的高度約為( )
A.27米B.31米C.48米D.52米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某射擊隊準備從甲、乙兩名隊員中選取一名隊員代表該隊參加比賽,特為甲、乙兩名隊員舉行了一次選拔賽,要求這兩名隊員各射擊10次.比賽結(jié)束后,根據(jù)比賽成績情況,將甲、乙兩名隊員的比賽成績制成了如下的統(tǒng)計圖(表):
甲隊員的成績統(tǒng)計表
成績(單位:環(huán)) | 7 | 8 | 9 | 10 |
次數(shù)(單位:次) | 5 | 1 | 2 | 2 |
(1)在圖1中,求“8環(huán)”所在扇形的圓心角的度數(shù);
(2)經(jīng)過整理,得到的分析數(shù)據(jù)如表,求表中的a、b、c的值.
隊員 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | b | 7 | 1 |
(3)根據(jù)甲、乙兩名隊員的成績情況,該射擊隊準備選派乙參加比賽,請你寫出一條射擊隊選派乙的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中的弦BC等于⊙O的半徑,延長BC到D,使BC=CD,點A為優(yōu)弧BC上的一個動點,連接AD,AB,AC,過點D作DE⊥AB,交直線AB于點E,當點A在優(yōu)弧BC上從點C運動到點B時,則DE+AC的值的變化情況是( )
A.不變B.先變大再變小C.先變小再變大D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過頂點A(0,2),以原點O為圓心,OA為半徑的圓與拋物線的另兩個交點為B,C,且B在C的左側(cè),△ABC有一個內(nèi)角為60°.
(1)求拋物線的解析式.
(2)若MN與直線y=﹣2x平行,M(x1,y1),N(x2,y2),M,N都在拋物線上,且M,N位于直線BC的兩側(cè),y1>y2,ME⊥BC于E,NF⊥BC于F,解決以下問題:
①求證:.
②求△MBC外心的縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生在一次射擊訓練中,隨機抽取10名學生的成績?nèi)缦卤,請回答問題:
環(huán)數(shù) | 6 | 7 | 8 | 9 |
人數(shù) | 1 | 5 | 2 |
(1)填空:10名學生的射擊成績的眾數(shù)是 ,中位數(shù)是 .
(2)求這10名學生的平均成績.
(3)若9環(huán)(含9環(huán))以上評為優(yōu)秀射手,試估計全年級500名學生中有多少是優(yōu)秀射手?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.
(1)求證:ΔADM∽ΔBMN;
(2)求∠DMN的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com