【題目】圖1、圖2是兩張形狀大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,線段AB、EF的端點均在小正方形的頂點上。
(1)如圖1,作出以AB為對角線的正方形;
(2)如圖2,以線段EF為一邊作出菱形EFGH(不是正方形),點G、H在小正方形頂點處。
【答案】
(1)
解:如圖,可取AB的中點,再過O作AB的垂線段,且兩條線段互相平分且相等。
(2)
解:如圖所示,菱形EFGH即可所求。
【解析】(1)根據(jù)正方形對角線互相平分且垂直,相等作圖;(2)菱形的四條邊相等,設每個小正方形的邊長為1,則EF= ,先以E為一個端點,再找另外一個端點得到線段EH長為 ,且夾角不為90度,再過F作這條線段的平行線FG= ,最后連接GH即可.
【考點精析】本題主要考查了菱形的性質和正方形的性質的相關知識點,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中,計算正確的是( )
A.(15x2y﹣5xy2)÷5xy=3x﹣5y
B.98×102=(100﹣2)(100+2)=9996
C.
D.(3x+1)(x﹣2)=3x2+x﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個相等的實數(shù)根;
④拋物線與x軸的另一個交點是(-1,0);
⑤當1<x<4時,有y2<y1,
其中正確的是( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:已知,如圖(1),在面積為S的△ABC中, BC=a,AC=b, AB=c,內切圓O的半徑為r連接OA、OB、OC,△ABC被劃分為三個小三角形.
∴.
(1)類比推理:若面積為S的四邊形ABCD存在內切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內切圓半徑r;
(2)理解應用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內切圓,設它們的半徑分別為r1和r2,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;
(2)樣本中,女生身高在E組的人數(shù)有人;
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學生約有多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com