提出問題:如圖,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)當(dāng)AP=AD時(如圖):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD-AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四邊形ABCD-S△ABP-S△CDP
=S四邊形ABCD-S△ABD-S△CDA
=S四邊形ABCD-(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)
=S△DBC+S△ABC.
(2)當(dāng)時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;
(3)當(dāng)時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________;
(4)一般地,當(dāng)(n表示正整數(shù))時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;
問題解決:當(dāng)時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對邊所得的線段與兩
邊對應(yīng)成比例。
已知:如圖,在△ABC中,AD是角平分線。
求證:=。
分析:要證=,一般只要證BD、DC與AB、AC
或BD、AB與DC、AC所在的三角形相似即可,現(xiàn)在點(diǎn)B、D、C
在一條直線上,△ABD與△ADC不相似,需要考慮用別的方法換比。在比例式
=中,AC恰是BD、DC、AB的第四比例項(xiàng),所以考慮過點(diǎn)C作CE//AD,交
BA的延長線于點(diǎn)E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明=
就可以轉(zhuǎn)化成證AE=AC。
證明:過點(diǎn)C作CE//DA交BA的延長線于點(diǎn)E。
。
(1)在上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要利用到了下列三種數(shù)學(xué)思想中的哪一種?選出一
個填在后面的括號內(nèi)………………………………………………………………( )
A. 數(shù)形結(jié)合思想 B. 轉(zhuǎn)化思想 C. 分類討論思想
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題。
如下圖,已知在△ABC中,AD是角平分線,AB=5cm,AC=4cm,
BC=7cm,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年江西撫州市崇仁四中初三第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題
問題背景 某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下兩個命題:
①如圖1,O是正三角形ABC的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON = 120°,則四邊形OPBQ的面積等于三角形ABC面積的三分之一.
②如圖2,O是正方形ABCD的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON = 90°,則四邊形OPBQ的面積等于正方形ABCD面積的四分之一.
然后運(yùn)用類比的思想提出了如下的命題:
③如圖3,O是正五邊形ABCDE的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON = 72°,則四邊形OPBQ的面積等于五邊形ABCDE面積的五分之一.
任務(wù)要求
(1)請你從①、②、③三個命題中選擇一個進(jìn)行證明;(說明:選①做對的得5分,選②做對的得4分,選③做對的得6分)
(2)請你繼續(xù)完成下面的探索:
如圖④,在正n(n≥3)邊形ABCDEF…中,O是中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON等于多少度時,則四邊形OPBQ的面積等于正n邊形ABCDE…面積的n分之一?(不要求證明)
解:(1)我選 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年江西撫州市初三第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
問題背景 某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下兩個命題:
①如圖1,O是正三角形ABC的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON = 120°,則四邊形OPBQ的面積等于三角形ABC面積的三分之一.
②如圖2,O是正方形ABCD的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON = 90°,則四邊形OPBQ的面積等于正方形ABCD面積的四分之一.
然后運(yùn)用類比的思想提出了如下的命題:
③如圖3,O是正五邊形ABCDE的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON = 72°,則四邊形OPBQ的面積等于五邊形ABCDE面積的五分之一.
任務(wù)要求
(1)請你從①、②、③三個命題中選擇一個進(jìn)行證明;(說明:選①做對的得5分,選②做對的得4分,選③做對的得6分)
(2)請你繼續(xù)完成下面的探索:
如圖④,在正n(n≥3)邊形ABCDEF…中,O是中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON 等于多少度時,則四邊形OPBQ的面積等于正n邊形ABCDE…面積的n分之一?(不要求證明)
解:(1)我選 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀探究題:
數(shù)學(xué)課上,張老師向大家介紹了等腰三角形的基本知識:有兩條邊相等的三角形叫等腰三角形,如圖1所示:在△ABC中,若AB=AC,則△ABC為等腰三角形且有∠B=∠C.此時,張老師出示了問題:如圖2,四邊形ABCD是正方形(正方形的四邊相等,四個角都是直角),點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.經(jīng)過思考,小明展示了一種正確的解題思路:在線段AB上取AB的中點(diǎn)M,連接ME,則AM=EC,在此基礎(chǔ)上,請聰明的同學(xué)們作進(jìn)一步的研究:
(1)求出角∠AME的度數(shù);
(2)你能在小明的思路下證明結(jié)論嗎?
(3)小穎提出:如圖3,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com