如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

【解析】(1)連OC,根據(jù)切線的性質(zhì)得到OC⊥PD,又AB=AE,OC=OB,則∠2=∠E,∠1=∠2,得到∠1=∠E,則OC∥AE,即可得到結(jié)論;

(2)根據(jù)等邊三角形的性質(zhì)得∠A=60°,則∠COB=60°,則∠P=30°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OP=2OC=2,從而求出BP

 

【答案】

(1)證明:連OC,如圖,

∵PD切⊙O于C,

∴OC⊥PD,

∵AB=AE,

∴∠2=∠E,

而OC=OB,

∴∠1=∠2,

∴∠1=∠E,

∴OC∥AE,

∴AD⊥PD;

(2)解:∵△ABE是等邊三角形,

∴∠A=60°,

∴∠COB=60°,

而∠OCP=90°,OB=OC=1,

∴∠P=30°,

∴OP=2OC=2,

∴BC=2-1=1.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB為半圓O的直徑,C、D、E、F是
AB
上的五等分點,P為直徑AB上的任意一點,若AB=4,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB為圓O的弦,OC垂直AB于點C,OC=3,若圓O的半徑為5,則弦AB的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•孝南區(qū)一模)已知,如圖所示,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交于⊙O于點E,∠BAC=45°,給出以下四個結(jié)論:
①BD=CD;②∠EBC=22.5°;③AE=2EC;④
AE
=2
DE
AE
,
DE
為劣弧)
其中正確結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,AB為⊙O的直徑,AC為弦,OD∥BC交AC于D,若AB=20cm,∠A=30°,則OD=
5cm
5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,AB為⊙O的直徑,D為
BC
中點,連接BC交AD于E,DG⊥AB于G.
(1)求證:BD2=AD•DE;
(2)如果tanA=
3
4
,DG=8,求DE的長.

查看答案和解析>>

同步練習冊答案