已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,則梯形的面積是( )
A.25
B.50
C.
D.
【答案】分析:過點(diǎn)D作DE∥AC交BC的延長線于點(diǎn)E,作DF⊥BC于F,證平行四邊形ADEC,推出AC=DE=BD,∠BDE=90°,根據(jù)等腰三角形性質(zhì)推出BF=DF=EF=BE,求出DF,根據(jù)梯形的面積公式求出即可.
解答:解:過點(diǎn)D作DE∥AC交BC的延長線于點(diǎn)E,
∵AD∥BC(已知),
即AD∥CE,
∴四邊形ACED是平行四邊形,
∴AD=CE=3,AC=DE,
在等腰梯形ABCD中,AC=DB,
∴DB=DE(等量代換),
∵AC⊥BD,AC∥DE,
∴DB⊥DE,
∴△BDE是等腰直角三角形,
作DF⊥BC于F,
則DF=BE=5,
S梯形ABCD=(AD+BC)•DF=(3+7)×5=25,
故選A.
點(diǎn)評:本題主要考查對等腰三角形性質(zhì),平行四邊形的性質(zhì)和判定,等腰梯形的性質(zhì),等腰直角三角形等知識點(diǎn)的理解和掌握,能求出高DF的長是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在等腰梯形ABCD中,AB∥CD,AC⊥BC,DG⊥AC,過B作EB⊥AB,交AC的延長線于E.
(1)求證:AD2=AC•CE;
(2)當(dāng)BE=CD時(shí),求證:△DCG≌△EBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、已知:在等腰梯形ABCD中,AD∥BC,直線MN是梯形的對稱軸,P是MN上的一點(diǎn).直線BP交直線DC于F,交CE于E,且CE∥AB.
(1)若點(diǎn)P在梯形的內(nèi)部,如圖①.求證:BP2=PE•PF;
(2)若點(diǎn)P在梯形的外部,如圖②,那么(1)的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在等腰梯形ABCD中,AD∥BC,AB=CD=5,EF是梯形ABCD的中位線,且EF=6,則梯形ABCD的周長是( 。
A、24B、22C、20D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、已知:在等腰梯形ABCD中,AD∥BC,AB=CD=4,MN是梯形ABCD的中位線,且MN=6,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•雅安)已知,在等腰梯形ABCD中,AD∥BC,AD=AB=2,∠B=60°,則梯形ABCD的周長(  )

查看答案和解析>>

同步練習(xí)冊答案