(本題12分)已知:如圖,二次函數(shù)的圖象與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).

1.(1)求該二次函數(shù)的關(guān)系式;

2.(2)寫出該二次函數(shù)的對稱軸和頂點(diǎn)坐標(biāo);

3.(3)點(diǎn)Q是線段AB上的動點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);

4.(4)若平行于x軸的動直線與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。

 

【答案】

 

1.(1)由題意,得 ……………………………………1分[來源:Z+xx+k.Com]

解得 所求二次函數(shù)的關(guān)系式為:.……………2分

2.(2)對稱軸為直線x=1,頂點(diǎn)坐標(biāo)為(1,4.5)…………………………………… 4分

3.(3)設(shè)點(diǎn)的坐標(biāo)為,過點(diǎn)軸于點(diǎn)

,得,

點(diǎn)的坐標(biāo)為.……………………………5分

,

,

.…………………6分

.……………………………………7分

當(dāng)時(shí),有最大值3,此時(shí).……………………………………8分

4.(3)存在.

中.

(。┤,,

又在中,,

.此時(shí),點(diǎn)的坐標(biāo)為

,得

此時(shí),點(diǎn)的坐標(biāo)為:.………………………………10分

(ⅱ)若,過點(diǎn)軸于點(diǎn)

由等腰三角形的性質(zhì)得:,,[來源:Z&xx&k.Com]

在等腰直角中,

,得,

此時(shí),點(diǎn)的坐標(biāo)為:.…………………………… …11分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,-3),且頂點(diǎn)坐標(biāo)為(-1,-4).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的圖象與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,求△ABC的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

﹣(本題12分)已知二次函數(shù)y=x2bxcx軸交于A(-1,0)、B(1,0)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的關(guān)系式;
(2)若有一半徑為r的⊙P,且圓心P在拋物線上運(yùn)動,當(dāng)⊙P與兩坐標(biāo)軸都相切時(shí),求半徑r的值.
(3)半徑為1的⊙P在拋物線上,當(dāng)點(diǎn)P的縱坐標(biāo)在什么范圍內(nèi)取值時(shí),⊙P與y軸相離、相交?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省沭陽縣中學(xué)中考模擬考試數(shù)學(xué)卷.doc 題型:解答題

﹣(本題12分)已知二次函數(shù)y=x2bxcx軸交于A(-1,0)、B(1,0)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的關(guān)系式;
(2)若有一半徑為r的⊙P,且圓心P在拋物線上運(yùn)動,當(dāng)⊙P與兩坐標(biāo)軸都相切時(shí),求半徑r的值.
(3)半徑為1的⊙P在拋物線上,當(dāng)點(diǎn)P的縱坐標(biāo)在什么范圍內(nèi)取值時(shí),⊙P與y軸相離、相交?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:011-2012學(xué)年山西省大同市九年級上學(xué)期第一次月考數(shù)學(xué)卷 題型:填空題

(本題12分)已知兩個(gè)全等的直角三角形紙片ABC、DEF,如圖(1)放置,點(diǎn)B、D重合,點(diǎn)F在BC上,AB與EF交于點(diǎn)G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.

1.(1)求證:△EGB是等腰三角形

2.(2)若紙片DEF不動,問△ABC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)最小            度時(shí),四邊形ACDE成為以ED為底的梯形(如圖(2)),求此梯形的高。

 

查看答案和解析>>

同步練習(xí)冊答案