精英家教網 > 初中數學 > 題目詳情

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準等腰梯形”。如圖1,四邊形ABCD即為“準等腰梯形”。其中∠B=∠C。

(1)在圖1所示的“準等腰梯形”ABCD中,選擇合適的一個頂點引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可)。
(2)如圖2,在“準等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點,若AB∥DE,AE∥DC,求證:

(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點E,若EB=EC,請問當點E在四邊形ABCD內部時(即圖3所示情形),四邊形ABCD是不是“準等腰梯形”,為什么?若點E不在四邊形ABCD內部時,情況又將如何?寫出你的結論(不必說明理由)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•安徽)我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準等腰梯形”.如圖1,四邊形ABCD即為“準等腰梯形”.其中∠B=∠C.

(1)在圖1所示的“準等腰梯形”ABCD中,選擇合適的一個頂點引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可);
(2)如圖2,在“準等腰梯形”ABCD中∠B=∠C.E為邊BC上一點,若AB∥DE,AE∥DC,求證:
AB
DC
=
BE
EC

(3)在由不平行于BC的直線AD截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點E.若EB=EC,請問當點E在四邊形ABCD內部時(即圖3所示情形),四邊形ABCD是不是“準等腰梯形”,為什么?若點E不在四邊形ABCD內部時,情況又將如何?寫出你的結論.(不必說明理由)

查看答案和解析>>

科目:初中數學 來源:2013年安徽省高級中等學校招生考試數學 題型:044

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準等腰梯形”.如圖1,四邊形ABCD即為“準等腰梯形”.其中∠B=∠C.

(1)在圖1所示的“準等腰梯形”ABCD中,選擇合適的一個頂點引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可).

(2)如圖2,在“準等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點,若AB∥DE,AE∥DC,求證:

(3)在由不平行于BC的直線截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點E,若EB=EC,請問當點E在四邊形ABCD內部時(即圖3所示情形),四邊形ABCD是不是“準等腰梯形”,為什么?若點E不在四邊形ABCD內部時,情況又將如何?寫出你的結論(不必說明理由)?

查看答案和解析>>

科目:初中數學 來源:2013年初中畢業(yè)升學考試(安徽卷)數學(解析版) 題型:解答題

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準等腰梯形”。如圖1,四邊形ABCD即為“準等腰梯形”。其中∠B=∠C。

(1)在圖1所示的“準等腰梯形”ABCD中,選擇合適的一個頂點引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可)。

(2)如圖2,在“準等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點,若AB∥DE,AE∥DC,求證:

(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點E,若EB=EC,請問當點E在四邊形ABCD內部時(即圖3所示情形),四邊形ABCD是不是“準等腰梯形”,為什么?若點E不在四邊形ABCD內部時,情況又將如何?寫出你的結論(不必說明理由)

 

查看答案和解析>>

科目:初中數學 來源:2013年安徽省中考數學試卷(解析版) 題型:解答題

我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準等腰梯形”.如圖1,四邊形ABCD即為“準等腰梯形”.其中∠B=∠C.

(1)在圖1所示的“準等腰梯形”ABCD中,選擇合適的一個頂點引一條直線將四邊形ABCD分割成一個等腰梯形和一個三角形或分割成一個等腰三角形和一個梯形(畫出一種示意圖即可);
(2)如圖2,在“準等腰梯形”ABCD中∠B=∠C.E為邊BC上一點,若AB∥DE,AE∥DC,求證:=;
(3)在由不平行于BC的直線AD截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點E.若EB=EC,請問當點E在四邊形ABCD內部時(即圖3所示情形),四邊形ABCD是不是“準等腰梯形”,為什么?若點E不在四邊形ABCD內部時,情況又將如何?寫出你的結論.(不必說明理由)

查看答案和解析>>

同步練習冊答案