已知a2+b2+2c2+2ac-2bc=0,則a+b的值為


  1. A.
    0
  2. B.
    1
  3. C.
    -1
  4. D.
    6
A
a2+b2+2c2+2ac-2bc=a2+c2+2ac+b2+c2-2bc=(a+c)2+(b-c)2∵a2+b2+2c2+2ac-2bc=0
∴(a+c)2+(b-c)2=0
又∵(a+c)2≥0,(b-c)2≥0
∴(a+c)2+(b-c)2≥0
若想使兩個(gè)非負(fù)數(shù)的和為零,必須有a+c=0且b-c=0,兩式相加a+c+b-c=0即a+b=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:把形如ax2+bx+c的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即a2±2ab+b2=(a±b)2
例如:(x-1)2+3、(x-2)2+2x、(
1
2
x-2)2+
3
4
x2是x2-2x+4的三種不同形式的配方(即“余項(xiàng)”分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng)--見橫線上的部分).
請根據(jù)閱讀材料解決下列問題:
(1)比照上面的例子,寫出x2-4x+2三種不同形式的配方;
(2)將a2+ab+b2配方(至少兩種形式);
(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a2+b2=6ab且a>b>0,則
a+b
a-b
的值為( 。
A、
2
B、±
2
C、2
D、±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把形如ax2+bx+c的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即a2±2ab+b2=(a±b)2
例如:(x-1)2+
 
、(x-2)2+
 
、(
1
2
x-2)2+
3
4
x2
.
是x2-2x+4的三種不同形式的配方(即“余項(xiàng)”分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng)--見橫線上的部分).
請根據(jù)閱讀材料解決下列問題:
(1)比照上面的例子,寫出x2+3x+1三種不同形式的配方;
(2)將a2+ab+b2配方(至少兩種形式);
(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:把形如ax2+bx+c的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即a2±2ab+b2=(a±b)2
例如:x2-2x+4=x2-2x+1+3=(x-1)2+
3
3

x2-2x+4=x2-4x+4+2x=(x-2)2+
2x
2x
;
x2-2x+4=
1
4
x2-2x+4+
3
4
x2=(
1
2
x-2)2+
3
4
x2
3
4
x2
是x2-2x+4的三種不同形式的配方(即“余項(xiàng)”分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng)--見橫線上的部分).
請根據(jù)閱讀材料解決下列問題:
(1)比照上面的例子,將二次三項(xiàng)式x2-4x+9配成完全平方式(直接寫出兩種形式);
(2)將a2+3ab+b2配方(寫兩種形式即可,需寫配方過程);
(3)已知a2+b2+c2-2ab+2c+1=0,求a-b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:把形如ax2+bx+c的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即a2±2ab+b2=(a±b)2.例如:x2-2x+4=x2-2x+1+3=(x-1)2+3是x2-2x+4的一種形式的配方,x2-2x+4=x2-4x+4+2x=(x-2)2+2x是x2-2x+4的另一種形式的配方…
請根據(jù)閱讀材料解決下列問題:
(1)比照上面的例子,寫出x2-4x+1的兩種不同形式的配方;
(2)已知x2+y2-4x+6y+13=0,求2x-y的值;
(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.

查看答案和解析>>

同步練習(xí)冊答案