【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個(gè)定點(diǎn),且OP=2,點(diǎn)E、F分別是OA、OB上的動(dòng)點(diǎn),若△PEF周長(zhǎng)的最小值等于2,則α=( )
A. 30°B. 45°C. 60°D. 15°
【答案】A
【解析】
設(shè)點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)為C,關(guān)于OB的對(duì)稱點(diǎn)為D,當(dāng)點(diǎn)E、F在CD上時(shí),△PEF的周長(zhǎng)為PE+EF+FP=CD,此時(shí)周長(zhǎng)最小,根據(jù)CD=2可求出α的度數(shù).
如圖,作點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)C,關(guān)于OB的對(duì)稱點(diǎn)D,連接CD,交OA于E,OB于F.此時(shí),△PEF的周長(zhǎng)最小.
連接OC,OD,PE,PF.
∵點(diǎn)P與點(diǎn)C關(guān)于OA對(duì)稱,
∴OA垂直平分PC,
∴∠COA=∠AOP,PE=CE,OC=OP,
同理,可得∠DOB=∠BOP,PF=DF,OD=OP.
∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,
∴∠COD=2α.
又∵△PEF的周長(zhǎng)=PE+EF+FP=CE+EF+FD=CD=2,
∴OC=OD=CD=2,
∴△COD是等邊三角形,
∴2α=60°,
∴α=30°.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,D、E分別在BC和AC上,AD與BE相交于點(diǎn)F.
(1)如圖1,若∠BAC=60°,BD=CE,求證:∠1=∠2;
(2)如圖2,在(1)的條件下,連接CF,若CF⊥BF,求證:BF=2AF;
(3)如圖3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說(shuō)明理由;
(3)把拋物線與直線y=x的交點(diǎn)稱為拋物線的不動(dòng)點(diǎn).若將(1)中拋物線平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿足什么條件時(shí),平移后的拋物線總有兩個(gè)不動(dòng)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形中,,、分別是、的中點(diǎn),、的延長(zhǎng)線分別與的延長(zhǎng)線交于點(diǎn)、,則( )
A.B.
C.D.與的大小關(guān)系不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在一次大課間活動(dòng)中,采用了四鐘活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)這次調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)求出扇形統(tǒng)計(jì)圖中“B:跳繩”所對(duì)扇形的圓心角的度數(shù),并補(bǔ)全條形圖;
(3)若該校有2000名學(xué)生,請(qǐng)估計(jì)選擇“A:跑步”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;
(3)能否在拋物線第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A為函數(shù)y=(x>0)圖象上一點(diǎn),連結(jié)OA,交函數(shù)y=(x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△OBC的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AC、AB上的點(diǎn),BD與CE相交于點(diǎn)O,給出四個(gè)條件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四個(gè)條件中,選擇兩個(gè)可以判定△ABC是等腰三角形的方法有( 。
A.2種B.3種C.4種D.6種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,,,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N再分別以MN為圓心,大于的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的有________.
①AD是的平分線;②;③點(diǎn)D在AB的中垂線上;④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com