【答案】
分析:(1)根據(jù)已知拋物線的解析式,可得到拋物線的對稱軸方程,從而根據(jù)A點坐標求出點B的坐標.
(2)根據(jù)A、B、C三點坐標,即可求得拋物線的解析式和它的頂點坐標;
①已經(jīng)求得M、C的坐標,利用待定系數(shù)法求解即可;
②假設存在符合條件的P點,分兩種情況考慮:
1)以N為直角頂點,即PN為另一條直角邊;
易求得點N的坐標,根據(jù)C、N點的坐標可知∠CNO=45°,若∠PNC=90°,可在y軸截取OD=ON,易得點D的坐標,即可求出直線DN的解析式,聯(lián)立拋物線的解析式即可得到點P的坐標;
2)以C為直角頂點,即PC為另一條直角邊;
根據(jù)A、C的縱坐標知:∠CAN=45°,此時∠ACN=90°,那么點A即為所求的P點;
綜合上述兩種情況,即可得到符合條件的P點坐標.
解答:解:(1)由題意知,拋物線的對稱軸為:x=-1,
已知A(-3,0),
故B(1,0).
(2)①∵點B(1,0),C(0,3)在拋物線上,拋物線與y軸交于點C(0,3);
∴

,
解得

,
∴拋物線所對應的函數(shù)關(guān)系式為y=-(x+1)
2+4;
∴M(-1,4)設直線MC所對應的函數(shù)關(guān)系式為y=kx+b,
∴

,
解得

,
∴直線MC所對應的函數(shù)關(guān)系式為y=-x+3;
②假設在拋物線上存在異于點C的點P,使得△NPC是以NC為直角邊的直角三角形.
1)若PN為△NPC的另一條直角邊,如圖1;

易得直線MC與x軸的交點坐標為N(3,0),
∵OC=ON,
∴∠CNO=45°,
在y軸上取點D(0,-3),連接ND交拋物線于點P,
∵ON=OD,
∴∠DNO=45°,
∴∠PNC=90°.
設直線ND的函數(shù)表達式為y=mx+n;
可得

,
解得

∴直線ND的函數(shù)表達式為y=x-3;
設點P(x,x-3),并將它代入拋物線的函數(shù)表達式,得x-3=-(x+1)
2+4,
即x
2+3x-6=0,
解得

,

,
∴

,

;
∴滿足條件的點為

,

),

,

).
2)若PC是另一條直角邊,如圖2;

∵點A是拋物線與x軸的另一交點,
∴點A的坐標為(-3,0);
連接AC;
∵OA=OC,
∴∠OCA=45°,
又∵∠OCN=45°,
∴∠ACN=90°,
∴點A就是所求的點P
3(-3,0);
第二種解法:求出直線AC的函數(shù)表達式為y=x+3;
設點P(x,x+3),代入拋物線的函數(shù)表達式,
得x+3=-(x+1)
2+4,
即x
2+3x=0;
解得x
1=-3,x
2=0;
∴y
1=0,y
2=3,
∴點P
3(-3,0),P
4(0,3)(舍去).]
綜上可知,在拋物線上存在滿足條件的點有3個,分別

,

),

,

),P
3(-3,0).
點評:此題是二次函數(shù)的綜合題,涉及到二次函數(shù)的對稱性、用待定系數(shù)法確定函數(shù)解析式的方法、直角三角形的判定、函數(shù)圖象交點坐標的求法等知識,需注意的是(2)②中,C、N都有可能是直角頂點,需要分類討論,以免漏解.