【題目】如圖,AM∥BN,BC是∠ABN的平分線.
(1)過點A作AD⊥BC,垂足為O,AD與BN交于點D. (要求:用尺規(guī)作圖,并在圖中標明相應字母,保留作圖痕跡,不寫作法.)
(2)求證:AC=BD.
【答案】(1)圖形見解析(2)證明見解析
【解析】
試題
(1)按“過直線外一點作已知直線的垂線的尺規(guī)作圖方法”作出圖形,并按要求標上相應字母即可;
(2)由BC平分∠ABN,AM∥BN可證得AB=AC;由AB=AC,AD⊥BC可得AD平分∠BAC,結(jié)合AM∥BN可證得AB=AD,從而可得BD=AC.
試題解析:
(1)如圖3,AD為所求線段;
(2)∵ AM∥BN,
∴ ∠ACB=∠CBN.
∵ BC是∠ABN的平分線,
∴ ∠ABC=∠CBN,
∴ ∠ABC=∠ACB,
∴ AB=AC.
∵ AD⊥BC,∴ ∠1=∠2,
∵ AM∥BN,∴ ∠2=∠3,
∴ ∠1=∠3,
∴ AB=BD,
∴ AC=BD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù) 的圖象與x軸交于點 A,B,與y軸交于點C.點P是該函數(shù)圖象上的動點,且位于第一象限,設(shè)點P的橫坐標為x.
(1)寫出線段AC,BC的長度:AC= , BC=;
(2)記△BCP的面積為S,求S關(guān)于x的函數(shù)表達式;
(3)過點P作PH⊥BC,垂足為H,連結(jié)AH,AP,設(shè)AP與BC交于點K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請求出 的值;若不存在,請說明理由,并求出 的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了開發(fā)利用海洋資源,某勘測飛機預測量一島嶼兩端A、B的距離,飛機在距海平面垂直高度為100米的點C處測得端點A的俯角為60°,然后沿著平行于AB的方向水平飛行了500米,在點D測得端點B的俯角為45°,求島嶼兩端A、B的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖矩形ABCD中,AD=1,CD= ,連接AC,將線段AC、AB分別繞點A順時針旋轉(zhuǎn)90°至AE、AF,線段AE與弧BF交于點G,連接CG,則圖中陰影部分面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAE +∠AED=180°,∠1=∠2,那么∠M=∠N.下面是推理過程,請你完成.
解:∵∠BAE+∠AED=180°(已知)
∴AB∥DE(______).
∴∠BAE=∠AEF(______).
又∵∠1=∠2(已知)
∴ ∠BAE∠1=∠AEF_____(等式性質(zhì)),即 ∠MAE = ∠NEA .
∴_______∥______(______).
∴∠M=∠N(兩直線平行,內(nèi)錯角相等).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點P為△ABC所在平面內(nèi)一點,過點P分別作PE∥AC交AB于點E,PF∥AB交BC于點D,交AC于點F.
【1】如圖1,若點P在BC邊上,此時PD=0,易證PD,PE,PF與AB滿足的數(shù)量關(guān)系PD+PE+PF=AB;當點P在△ABC內(nèi),先在圖2中作出圖形,并寫出PD,PE,PF與AB滿足的數(shù)量關(guān)系,然后證明你的結(jié)論
【2】當點P在△ABC外,先在圖3中作出圖形,然后寫出PD,PE,PF與AB滿足的數(shù)量關(guān)系.(不用說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:
①畫出圖中△ABC的高AD(標注出點D的位置);
②畫出把△ABC沿射線AD方向平移2cm后得到的△A1B1C1;
③根據(jù)“圖形平移”的性質(zhì),得BB1=_____cm,AC與A1C1的位置關(guān)系是_____,數(shù)量關(guān)系是:________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com