【題目】某中學(xué)疫情期間為了切實(shí)抓好“停課不停學(xué)”活動,借助某軟件平臺隨機(jī)抽取了該校部分學(xué)生的在線學(xué)習(xí)時間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)以上信息回答下列問題
(1)本次調(diào)查的人數(shù)為 , 學(xué)習(xí)時間為7小時的所對的圓心角為 ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1800人,估計(jì)有多少學(xué)生在線學(xué)習(xí)時間不低于8個小時.
【答案】(1)50,86.4°;(2)詳見解析;(3)1260
【解析】
(1)根據(jù)在線學(xué)習(xí)時間8h和所占的百分比求出調(diào)查的總?cè)藬?shù);計(jì)算出學(xué)習(xí)時間為9小時的人數(shù)從而得到學(xué)習(xí)時間為7小時的人數(shù),再用360°乘以在線學(xué)習(xí)時間7h所占的百分比即可;
(2)依據(jù)(1)中相關(guān)數(shù)據(jù),從而補(bǔ)全統(tǒng)計(jì)圖;
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以估計(jì)有多少學(xué)生在線學(xué)習(xí)時間不低于8個小時.
解:(1)本次調(diào)查的人數(shù)為:20÷40%=50(人),
學(xué)習(xí)時間為9小時的人數(shù)為:50×30%=15(人),
學(xué)習(xí)時間為7小時的人數(shù)為:50-15-20-3=12(人),
所對的圓心角為:360°×=86.4°;
故答案為:50,86.4°;
(2)依據(jù)(1)中相關(guān)數(shù)據(jù),補(bǔ)全頻數(shù)分布直方圖如下:
(3)1800×(30%+40%)=1260(人).
答:估計(jì)全校有1260在線學(xué)習(xí)時間不低于8個小時.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為(-8,0),點(diǎn)B坐標(biāo)為(0,6),⊙O的半徑為4(O為坐標(biāo)原點(diǎn)),點(diǎn)C是⊙O上一動點(diǎn),過點(diǎn)B作直線AC的垂線BP,P為垂足.點(diǎn)C在⊙O上運(yùn)動一周,則點(diǎn)P運(yùn)動的路徑長等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線交于C、D兩點(diǎn),與x軸交于點(diǎn)A.
(1)求n的取值范圍和點(diǎn)A的坐標(biāo);
(2)過點(diǎn)C作CB⊥y軸,垂足為B,若S△ABC=4,求雙曲線的解析式;
(3)在(1)、(2)的條件下,若AB=,求點(diǎn)C和點(diǎn)D的坐標(biāo)并根據(jù)圖象直接寫出反比例函數(shù)的值小于一次函數(shù)的值時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,的頂點(diǎn),分別在,邊上,高與正方形的邊長相等,連接分別交,于點(diǎn),,下列說法:①;②連接,,則為直角三角形;③;④若,,則的長為,其中正確結(jié)論的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步驟作圖:①以C為圓心,以適當(dāng)長為半徑做弧,交CB、CD于M、N兩點(diǎn);②分別以M、N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)E,作射線CE交BD于點(diǎn)O,交AD邊于點(diǎn)F;則BO的長度為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線交坐標(biāo)軸于A、C兩點(diǎn),拋物線過A、C兩點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)P為拋物線位于第三象限上一動點(diǎn),連接PA,PC,試問△PAC是否存在最大值,若存在,請求出△APC取最大值以及點(diǎn)P的坐標(biāo),若不存在,請說明理由;
(3)點(diǎn)M為拋物線上一點(diǎn),點(diǎn)N為拋物線對稱軸上一點(diǎn),若△NMC是以∠NMC為直角的等腰直角三角形,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①在中,是邊的高,點(diǎn)是上任意一點(diǎn),若則的最小值為_ ;
(2)如圖②,在等腰中,是的垂直平分線,分別交于點(diǎn),,求的周長;
問題解決:
(3)如圖③,某公園管理員擬在園內(nèi)規(guī)劃一個區(qū)域種植花卉,且為方便游客游覽,欲在各頂點(diǎn)之間規(guī)劃道路和,滿足點(diǎn)到的距離為.為了節(jié)約成本,要使得之和最短,試求的最小值(路寬忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=,∠B=30°,D是BC上一點(diǎn),連接AD,把△ABD沿直線AD折疊,點(diǎn)B落在B′處,連接B'C,若△AB'C是直角三角形,則BD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地大約要走多少千米?
(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com