如圖,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點,∠BAE=∠MCE,∠MBE=45°.
(1)求證:BE=ME;
(2)若AB=7,求MC的長.

【答案】分析:由已知可得∠MBE=∠BME=45°,即BE=ME,根據(jù)AAS判定△AEB≌△CEM,全等三角形的對應邊相等,則MC=AB=7.
解答:(1)證明:∵AD∥BC,EA⊥AD,
∴∠DAE=∠AEB=90°.(2分)
∵∠MBE=45°,∴∠BME=45°.
∴BE=ME.(2分)

(2)解:∵∠AEB=∠AEC=90°,∠1=∠2,
又∵BE=ME,
∴△AEB≌△CEM,(3分)
∴MC=BA=7.(1分)
點評:此題主要考查了梯形的性質及全等三角形的判定方法的理解及運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案