【題目】一次函數(shù)y=kx+4的圖象經(jīng)過點(3,﹣2)
(1)求這個函數(shù)解析式;
(2)在下面方格圖中畫出這個函數(shù)的圖象.
【答案】解:(1)∵一次函數(shù)y=kx+4的圖象經(jīng)過點 (3,﹣2)
∴﹣2=3k+4
解得:k=﹣2
∴一次函數(shù)的解析式是y=﹣2x+4;
(2)∵一次函數(shù)的解析式是y=﹣2x+4
令x=0,得y=4
令y=0,得x=2,
x | … | 0 | 2 | … |
y=﹣2x+4 | … | 4 | 0 | … |
畫出函數(shù)的圖象如圖:
【解析】(1)把點(3,﹣2)代入y=kx+4,即可求出k的值.
(2)利用兩點法畫出圖象即可.
【考點精析】利用一次函數(shù)的圖象和性質(zhì)和確定一次函數(shù)的表達(dá)式對題目進(jìn)行判斷即可得到答案,需要熟知一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn);確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10, 求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)解析式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當(dāng)增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖坐標(biāo)系中,O(0,0) ,A(6,6),B(12,0).將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則CE : DE的值是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com