【題目】如圖,數軸上點A表示數x,點B表示-2,點C表示數2x+8.
(1)若將數軸沿點B對折,點A與點C恰好重合,則點A和點C分別表示什么數?
(2)若BC=4AB,則點A和點C分別表示什么數?
科目:初中數學 來源: 題型:
【題目】畫圖并計算:已知線段AB=2 cm,延長線段AB至點C,使得2BC=AB,再反向延長AC至點D,使得AD=AC.
(1)準確地畫出圖形,并標出相應的字母;
(2)線段DC的中點是哪個?線段AB的長是線段DC長的幾分之幾?
(3)求出線段BD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解學生體育訓練的情況,某市從全市九年級學生中隨機抽取部分學生進行了一次體育科目測試(把成績結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如下兩幅不完整的統(tǒng)計圖.請根據統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學生人數;
(2)求扇形圖中∠α的度數,并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A為函數y= (x>0)圖象上一點,連結OA,交函數y= (x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列等式成立的是( )
A. (-a-b)2+(a-b)2=-4ab B. (-a-b)2+(a-b)2=a2+b2
C. (-a-b)(a-b)=(a-b)2 D. (-a-b)(a-b)=b2-a2
【答案】D
【解析】解析:∵(-a-b)2+(a-b)2=(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,
∴選項A與選項B錯誤;
∵(-a-b)(a-b)=-(a+b)(a-b)=-(a2-b2)=b2-a2,∴選項C錯誤,選項D正確.
故選D.
【題型】單選題
【結束】
8
【題目】若x=1,y=,則x2+4xy+4y2的值是( )
A. 2 B. 4 C. 32 D. 12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2,則△ABC是( )
A. 等腰三角形 B. 等腰直角三角形
C. 直角三角形 D. 等腰三角形或直角三角形
【答案】B
【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,
∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,
∴c=2a,c=2b,
∴a=b,且a2+b2=c2,
∴△ABC為等腰直角三角形.
故選B.
【題型】單選題
【結束】
11
【題目】將圖1中陰影部分的小長方形變換到圖2的位置,你能根據兩個圖形的面積關系得到的數學公式是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的周長是26cm,對角線AC與BD交于點O,AC⊥AB,E是BC中點,△AOD的周長比△AOB的周長多3cm,則AE的長度為( )
A.3cm
B.4cm
C.5cm
D.8cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】云南地區(qū)地震發(fā)生后,市政府籌集了必需物資120噸打算運往災區(qū),現有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)
(1)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)省運費,市政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數為14輛,你能求出這三種車型分別有多少輛嗎?此時的運費又是多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com