【題目】AB是⊙O的直徑,C點(diǎn)在⊙O上,FAC的中點(diǎn),OF的延長線交⊙O于點(diǎn)D,點(diǎn)EAB的延長線上,∠A=∠BCE

1)求證:CE是⊙O的切線;

2)若BCBE,判定四邊形OBCD的形狀,并說明理由.

【答案】1)證明見解析;(2)四邊形OBCD是菱形,理由見解析.

【解析】

1)證明∠OCE90°問題可解;

2)由同角的余角相等,可得∠BCO=∠BOC,再得到BCO是等邊三角形,故∠AOC120°,再由垂徑定理得到AFCF,推出COD是等邊三角形問題可解.

1)證明:∵AB是⊙O的直徑,

∴∠ACB90°

∴∠ACO+BCO90°,

OCOA,

∴∠A=∠ACO,

∴∠A+BCO90°

∵∠A=∠BCE,

∴∠BCE+BCO90°

∴∠OCE90°,

CE是⊙O的切線;

2)解:四邊形OBCD是菱形,

理由:∵BCBE

∴∠E=∠ECB,

∵∠BCO+BCE=∠COB+E90°,

∴∠BCO=∠BOC

BCOB,

∴△BCO是等邊三角形,

∴∠AOC120°,

FAC的中點(diǎn),

AFCF,

OAOC

∴∠AOD=∠COD60°,

ODOC,

∴△COD是等邊三角形,

CDODOBBC,

∴四邊形OBCD是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,4),B(3,4)P 為線段 OA 上一動(dòng)點(diǎn),過 O,PB 三點(diǎn)的圓交 x 軸正半軸于點(diǎn) C,連結(jié) AB, PCBC,設(shè) OP=m.

(1)求證:當(dāng) P A 重合時(shí),四邊形 POCB 是矩形.

(2)連結(jié) PB,求 tanBPC 的值.

(3)記該圓的圓心為 M,連結(jié) OM,BM,當(dāng)四邊形 POMB 中有一組對邊平行時(shí),求所有滿足條件的 m 的值.

(4)作點(diǎn) O 關(guān)于 PC 的對稱點(diǎn)O ,在點(diǎn) P 的整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)O 落在APB 的內(nèi)部 (含邊界)時(shí),請寫出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某專賣店有A、B兩種商品,已知在打折前,買60A商品和30B商品用了1080元,買50A商品和10B商品用了840元.A、B兩種商品打相同折以后,某人買500A商品和450B商品一共比不打折少花1960元,請問A、B兩種商品打折前各多少錢?打了多少折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)C是圓周上一點(diǎn),連接AC、BC,以點(diǎn)C為端點(diǎn)作射線CD、CP分別交線段AB所在直線于點(diǎn)DP,使∠1=∠2=∠A

1)求證:直線PCO的切線;

2)若CD4,BD2,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于CD兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tanABO=,OB=4,OE=2

1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;

2)求OCD的面積;

3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C

(1)求此拋物線的解析式;

(2)若點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn)(不點(diǎn)B,C重合),過點(diǎn)Py軸的平行線交直線BC于點(diǎn)D,求PD的長度最大時(shí)點(diǎn)P的坐標(biāo).

(3)設(shè)拋物線的對稱軸與BC交于點(diǎn)E,點(diǎn)M是拋物線的對稱軸上一點(diǎn),Ny軸上一點(diǎn),是否存在這樣的點(diǎn)M和點(diǎn)N,使得以點(diǎn)C、E、M、N為頂點(diǎn)的四邊形是菱形?如果存在,請直接寫出點(diǎn)M的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長為1的正方形的兩邊在坐標(biāo)軸上,以它的對角線為邊作正方形,再以正方形的對角線為邊作正方形,以此類推、則正方形的頂點(diǎn)的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案