在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關.當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.

(1)請根據(jù)下列圖形,填寫表中空格:

(2)如果只限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?

答案:
解析:

;正三角形,正方形,正六邊形


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

36、在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下-絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關.當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.

(1)請根據(jù)下列圖形,填寫表中空格:

(2)如圖,如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形;
(3)正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關.當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.
(1)請根據(jù)下列圖形,填寫表中空格:
精英家教網(wǎng)
正多邊形邊數(shù) 3 4 5 6 n
正多邊形每個內(nèi)角的度數(shù)
 
 
 
 
 
(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?
(3)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年人教版七年級下第七章第三節(jié)多邊形及其內(nèi)角和(1)練習卷(解析版) 題型:解答題

在日常生活中,觀察各種建筑物的地板,你就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關,當圍繞一點拼在一起的多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.

(1)如圖1,請根據(jù)下列圖形,填寫表中空格:

 

      正多邊形邊數(shù)

  3

  4

  5

  6

 …

 

正多邊形每個內(nèi)角的度數(shù)

 

 

 

 

 

 

(2)如果限于一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?

(3)從正三角形、正方形、正六邊形中選一種,再在其它正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成一個平面圖,并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關,當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成一個平面圖形。
(1)請根據(jù)下列圖形,填寫表中空格:

(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?
(3)不能用正五邊形形狀的材料鋪滿地面的理由是什么?
(4)某家庭準備用正三角形與正六邊形兩種瓷磚結合在一起鑲嵌地面,由你幫助設計鑲嵌圖案,你能設計幾種不同的鑲嵌方案?
(5)正三角形和正方形組合呢?(畫圖說明)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年廣東省深圳市羅湖區(qū)東湖中學中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關.當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.
(1)請根據(jù)下列圖形,填寫表中空格:

正多邊形邊數(shù)3456n
正多邊形每個內(nèi)角的度數(shù)______________________________
(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?
(3)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

同步練習冊答案