【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B0,3),且其對稱軸為直線x=﹣1

1)求此拋物線的解析式;

2)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求PAB的面積的最大值,并求出此時點P的坐標.

【答案】1y=﹣x22x+3;(2PAB的面積的最大值為,此時點P的坐標().

【解析】

1)因為對稱軸是直線x=-1,所以得到點A-3,0)的對稱點是(10),因此利用交點式y=ax-x1)(x-x2),求出解析式.
2)根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得最大值,根據(jù)自變量與函數(shù)值的對應關系,可得答案.

1)∵拋物線對稱軸是直線x=﹣1且經(jīng)過點A(﹣3,0

由拋物線的對稱性可知:拋物線還經(jīng)過點(1,0

設拋物線的解析式為yaxx1)(xx2)(a0

即:yax1)(x+3

B03)代入得:3=﹣3a

a=﹣1

∴拋物線的解析式為:y=﹣x22x+3

2)設直線AB的解析式為ykx+b,

A(﹣30),B03),

,

∴直線AByx+3

PQx軸于Q,交直線ABM,

Px,﹣x22x+3),則Mxx+3),

PM=﹣x22x+3﹣(x+3)=﹣x23x,

,

時,,,

∴△PAB的面積的最大值為,此時點P的坐標為(,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字23,5.將三張牌背面朝上,洗勻后放在桌子上.

1)從中任取一張,求取到偶數(shù)的概率.

2)甲、乙兩人進行摸牌游戲.

①甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

②若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】桌面倒扣著背面圖案相同的四張卡片,其正面分別標記有數(shù)字,先任意抽取一張,卡片上的數(shù)記作x,不放回,再抽取一張,卡片上的數(shù)字記作y,設點A的坐標為(x,y.

(1)用樹狀圖或列表法列舉點A所有的坐標情況;

(2)求點A在拋物線上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,ABC的頂點A的坐標為(﹣3,4).

1)畫出ABC關于y軸的對稱圖形A1B1C1,并寫出A1的坐標;

2)畫出將ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到的A2B2C2,并寫出A2的坐標;

3)求出(2)中點A所經(jīng)過的路徑的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是一個橫斷面為拋物線形狀的拱橋,當水面寬4 m,拱頂(拱橋洞的最高點)離水面2 m,當水面下降1 m,水面的寬度為_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.

1)求從中任意抽取1個球恰好是紅球的概率;

2)學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙,你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線ykx+mx軸、y軸分別交于A、C兩點,拋物線y=﹣x2+bx+c經(jīng)過A、C兩點,點B是拋物線與x軸的另一個交點,當x=﹣時,y取最大值

1)求拋物線和直線的解析式;

2)設點P是直線AC上一點,且SABPSBPC13,求點P的坐標;

3)若直線yx+a與(1)中所求的拋物線交于MN兩點,問:

①是否存在a的值,使得∠MON90°?若存在,求出a的值;若不存在,請說明理由;

②猜想當∠MON90°時,a的取值范圍(不寫過程,直接寫結論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,D是邊BC上一點,以點A為圓心,AD長為半徑作弧,如果與邊BC有交點E(不與點D重合),那么稱A-外截弧.例如,圖中的一條A-外截弧.在平面直角坐標系xOy中,已知存在A-外截弧,其中點A的坐標為,點B與坐標原點O重合.

1)在點,,中,滿足條件的點C是_______.

2)若點C在直線.

①求點C的縱坐標的取值范圍.

②直接寫出A-外截弧所在圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程.1)用配方法解下列一元二次方程. x2x=0.

2)兩個數(shù)的和為8,積為9.75,求這兩個數(shù).

查看答案和解析>>

同步練習冊答案