【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:

x

-2

-1

0

1

2

y=ax2+bx+c

t

m

-2

-2

n

根據(jù)以上列表,回答下列問題:

1)直接寫出c的值和該二次函數(shù)圖象的對稱軸;

2)寫出關(guān)于x的一元二次方程ax2+bx+c=t的根;

3)若m=-1,求此二次函數(shù)的解析式.

【答案】1c=-2,對稱軸為直線;(2-2,3是關(guān)于x的一元二次方程ax2+bx+c=t的根;(3

【解析】

(1)根據(jù)表格中對應(yīng)值可知對稱軸的值和拋物線與y軸的交點,即可求得c的值;

(2)根據(jù)二次函數(shù)的對稱性即可求得;

(3)根據(jù)待定系數(shù)法求得即可.

1c=-2,對稱軸為直線.

2)由對稱性可知,-2,3是關(guān)于x的一元二次方程ax2+bx+c=t的根.

3 由題意知,二次函數(shù)的圖象經(jīng)過點(-1,-1),(0,-2),(1,-2.

解得

二次函數(shù)的解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量一個鐵球的直徑,將該鐵球放入工件槽內(nèi),測得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為(

A.12 cmB.10 cmC.8 cmD.6 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,∠C=90°,AC=3BC=4OBC的中點,到點O的距離等于BC的所有點組成的圖形記為G,圖形GAB交于點D

1)補全圖形并求線段AD的長;

2)點E是線段AC上的一點,當(dāng)點E在什么位置時,直線ED 圖形G有且只有一個交點?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠B60°,AB3cm,過點A作∠EAF60°,分別交DC,BC的延長線于點E,F,連接EF

1)如圖1,當(dāng)CECF時,判斷△AEF的形狀,并說明理由;

2)若△AEF是直角三角形,求CE,CF的長度;

3)當(dāng)CE,CF的長度發(fā)生變化時,△CEF的面積是否會發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公司要建一個矩形的產(chǎn)品展示臺,展示臺的一邊靠找為9m的宣傳版(這條邊不能超出宣傳版),另三邊用總長為40m的紅布粘貼在展示臺邊上.設(shè)垂直于宣傳版的一邊長為

1)當(dāng)展示臺的面積為128m2時,求的值;

2)設(shè)展示臺的面積為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是直徑AB上的一點,AB=6CPAB交半圓于點C,以BC為直角邊構(gòu)造等腰RtBCD,∠BCD=90°,連接OD

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,BCOD的長度之間的關(guān)系進行了探究.

下面是小明的探究過程,請補充完整:

1)對于點PAB上的不同位置,畫圖、測量,得到了線段AP,BC,OD的長度的幾組值,如下表:

位置1

位置2

位置3

位置4

位置5

位置6

位置

AP

0.00

1.00

2.00

3.00

4.00

5.00

BC

6.00

5.48

4.90

4.24

3.46

2.45

OD

6.71

7.24

7.07

6.71

6.16

5.33

AP,BCOD的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時,線段AP的長度約為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+m1x+m的對稱軸為x,請你解答下列問題:

1m   ,拋物線與x軸的交點為   

2x取什么值時,y的值隨x的增大而減?

3x取什么值時,y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC

1)求證:DB平分∠ADC

2)若CD9,tanABE,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;

(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案