【題目】如圖,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.點E是CD的中點,則AE的長為( )
A.6
B.
C.5
D.
【答案】B
【解析】解:延長AE交BC于F,如圖所示:
∵AB⊥BC,AB⊥AD,
∴AD∥BC,
∴∠D=∠C,
∵點E是CD的中點,
∴DE=CE,
在△ADE和△FCE中,
,
∴△ADE≌△FCE(ASA),
∴AE=FE,AD=CF=5,
∴BF=BC﹣CF=5,
在Rt△ABF中,AF= = =13,
∴AE= AF= .
【考點精析】認真審題,首先需要了解平行線的判定與性質(zhì)(由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結(jié)論是平行線的性質(zhì)),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】李大伯承包了一片荒山,在山上種植了一部分優(yōu)質(zhì)油桃,今年已進入第三年收獲期.今年收獲油桃6 912千克,已知李大伯第一年收獲的油桃重量為4 800千克.試求去年和今年兩年油桃產(chǎn)量的年平均增長率,照此增長率,預計明年油桃的產(chǎn)量為多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:
①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小輝從家(點0)出發(fā),沿著等腰三角形A0B的邊0A-AB-B0的路徑去勻勻速散步,其中0A=0B。設小輝距家(點0)的距離為S,散步的時間為t,則下列圖形中能大致刻畫S與t之間函數(shù)關系的圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿直線AD折疊,點B與點E重合,連接BE交AD于O.∠ABC=90°,AB=6,BC=8,AC=10,SACD=15.有下列結(jié)論:①SCDE=5;②CD=5;③OB=OE;④SABD:SACD=3:4,則以上結(jié)論正確的是( )
A. ①②B. ②③C. ②③④D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“道路交通管理條例”規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A正前方30米B處,過了2秒后,測得小汽車C與車速檢測儀A間距離為50米,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角△ABC中,AD平分∠BAC交BC于點D,點M,N分別是AD和AB上的動點,當SABC=6,AC=4時,BM+MN的最小值等于_______。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,是一個長為 2m,寬為 2n 的長方形,沿圖中虛線用剪刀將其均分成四個完全相同的小長方形,然后按圖 2 的形狀拼圖.
(1)圖 2 中的圖形陰影部分的邊長為 ;(用含 m、n 的代數(shù)式表示)
(2)請你用兩種不同的方法分別求圖 2 中陰影部分的面積; 方法一: ;方法二: .
(3)觀察圖 2,請寫出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關系式: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com