【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費(fèi)習(xí)慣.由此催生了一批外賣點餐平臺,已知某外賣平臺的送餐費(fèi)用與送餐距離有關(guān)(該平臺只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺隨機(jī)抽取80名點外賣的用戶進(jìn)行統(tǒng)計,按送餐距離分類統(tǒng)計結(jié)果如下表:

送餐距離x(千米)

0x1

1x2

2x3

3x4

4x5

數(shù)量

12

20

24

16

8

1)從這80名點外賣的用戶中任取一名用戶,該用戶的送餐距離不超過3千米的概率為 ;

2)以這80名用戶送餐距離為樣本,同一組數(shù)據(jù)取該小組數(shù)據(jù)的中間值(例如第二小組(1x 2)的中間值是1.5),試估計利用該平臺點外賣用戶的平均送餐距離;

3)若該外賣平臺給送餐員的送餐費(fèi)用與送餐距離有關(guān),不超過2千米時,每份3元;超過2千米但不超4千米時,每份5元;超過4千米時,每份9元. 以給這80名用戶所需送餐費(fèi)用的平均數(shù)為依據(jù),若送餐員一天的目標(biāo)收入不低于150元,試估計一天至少要送多少份外賣?

【答案】1;(2)估計利用該平臺點外賣用戶的平均送餐距離為2.35千米;(3)估計一天至少要送33份外賣.

【解析】

1)由表中數(shù)據(jù),用頻率計算所求的概率值;
2)計算加權(quán)平均數(shù)即可;
3)計算送一份外賣的平均收入,再求得一天至少要送多少份外賣.

1)由表中數(shù)據(jù),計算所求的概率為P=

故答案為:;

2)估計利用該平臺點外賣用戶的平均送餐距離為:

×12×0.5+20×1.5+24×2.5+16×3.5+8×4.5=2.35(千米);

3)送一份外賣的平均收入為:+5+9×=(元),

150÷≈32.6,

所以估計一天至少要送33份外賣.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于及一個矩形給出如下定義:如果上存在到此矩形四份頂點距離都相等的點,那么稱是該矩形的等距圓,如圖,平面直角坐標(biāo)系中,矩形的頂點坐標(biāo)為,頂點軸上,,且的半徑為

1)在,中可以成為矩形等距圓的圓心的是__________

2)如果點在直線上,且是矩形的等距圓,那么點的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線yx1交于AB兩點,直線AB與拋物線的對稱軸交于點E

(1)求拋物線的解板式.

(2)P在直線AB上方的拋物線上運(yùn)動,若△ABP的面積最大,求此時點P的坐標(biāo).

(3)在平面直角坐標(biāo)系中,以點BE、CD為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的一種產(chǎn)品按照質(zhì)量由高到低分為AB,C,D四級,為了增加產(chǎn)量、提高質(zhì)量,該公司改進(jìn)了一次生產(chǎn)工藝,使得生產(chǎn)總量增加了一倍.為了解新生產(chǎn)工藝的效果,對改進(jìn)生產(chǎn)工藝前、后的四級產(chǎn)品的占比情況進(jìn)行了統(tǒng)計,繪制了如下扇形圖:

根據(jù)以上信息,下列推斷合理的是( 。

A.改進(jìn)生產(chǎn)工藝后,A級產(chǎn)品的數(shù)量沒有變化

B.改進(jìn)生產(chǎn)工藝后,B級產(chǎn)品的數(shù)量增加了不到一倍

C.改進(jìn)生產(chǎn)工藝后,C級產(chǎn)品的數(shù)量減少

D.改進(jìn)生產(chǎn)工藝后,D級產(chǎn)品的數(shù)量減少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OABCD的對稱中心,點A的坐標(biāo)為(2,-2),AB=5AB//x軸,反比例函數(shù)y=的圖象經(jīng)過點D,將ABCD沿y軸向下平移,使點C的對應(yīng)點C′落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為(  )

A.10B.18C.20D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】曲線在直角坐標(biāo)系中的位置如圖所示,曲線是由半徑為2,圓心角為是坐標(biāo)原點,點軸上)繞點旋轉(zhuǎn),得到;再將繞點旋轉(zhuǎn),得到;……依次類推,形成曲線,現(xiàn)有一點點出發(fā),以每秒個單位長度的速度,沿曲線向右運(yùn)動,則點的坐標(biāo)為___________;在第時,點的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abmam+b)(m為實數(shù));⑤4acb20.其中錯誤結(jié)論的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形中,、分別是邊上的點,交于點.

1)如圖1,若四邊形是矩形,且,求證:;

2)如圖2,若四邊形是平行四邊形,試探究:當(dāng)滿足什么關(guān)系時,使得成立?并證明你的結(jié)論;

3)如圖3,若,,,,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,(點位于對稱軸的左側(cè)),與軸交于點.為線段上一點,過點作直線軸交圖象于點(點在點的左側(cè)),且.

1)求該二次函數(shù)的對稱軸及的值.

2)將頂點向右平移個單位至點,再過點作直線的對稱點,若點軸上方的圖象上一點且到軸距離為1,求,的值.

查看答案和解析>>

同步練習(xí)冊答案