【題目】直角三角形的外接圓半徑為5cm,內(nèi)切圓半徑為1cm,則此三角形的周長是 .
【答案】22cm
【解析】解: ⊙I切AB于E,切BC于F,切AC于D,連接IE,IF,ID,
則∠CDI=∠C=∠CFI=90°,ID=IF=1cm,
∴四邊形CDIF是正方形,
∴CD=CF=1cm,
由切線長定理得:AD=AE,BE=BF,CF=CD,
∵直角三角形的外接圓半徑為5cm,內(nèi)切圓半徑為1cm,
∴AB=10cm=AE+BE=BF+AD,
即△ABC的周長是AC+BC+AB=AD+CD+CF+BF+AB=10cm+1cm+1cm+10cm=22cm,
所以答案是:22cm.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的外接圓與外心和三角形的內(nèi)切圓與內(nèi)心的相關(guān)知識(shí)可以得到問題的答案,需要掌握過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心;三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年3月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測儀進(jìn)行海上搜救,分別在A、B兩個(gè)探測點(diǎn)探測到C處是信號(hào)發(fā)射點(diǎn),已知A、B兩點(diǎn)相距400m,探測線與海平面的夾角分別是30°和60°,若CD的長是點(diǎn)C到海平面的最短距離.
(1)問BD與AB有什么數(shù)量關(guān)系,試說明理由;
(2)求信號(hào)發(fā)射點(diǎn)的深度.(結(jié)果精確到1m,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),且a≠0)的圖象如圖所示,則一次函數(shù)y=cx+ 與反比例函數(shù)y= 在同一坐標(biāo)系內(nèi)的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,DE是BC的垂直平分線,DE交AC于點(diǎn)E,連接BE,若BE=13,BC=10,則sinC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1 , y1)、B(x2 , y2),當(dāng)y1>y2時(shí),試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,坐標(biāo)平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),其頂點(diǎn)為D,且k>0,若△ABC與△ABD的面積比為1:4,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解本校學(xué)生對(duì)球類運(yùn)動(dòng)的愛好情況,采用抽樣的方法,從足球、籃球、排球、其它等四個(gè)方面調(diào)查了若干名學(xué)生,并繪制成“折線統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”.請(qǐng)你根據(jù)圖中提供的部分信息解答下列問題:
(1)在這次調(diào)查活動(dòng)中,一共調(diào)查了名學(xué)生;
(2)“足球”所在扇形的圓心角是度;
(3)補(bǔ)全折線統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在100米直道AB上練習(xí)勻速往返跑,若甲、乙分別中A,B兩端同時(shí)出發(fā),分別到另一端點(diǎn)處掉頭,掉頭時(shí)間不計(jì),速度分別為5m/s和4m/s.
(1)在坐標(biāo)系中,虛線表示乙離A端的距離s(單位:m)與運(yùn)動(dòng)時(shí)間t(單位:s)之間的函數(shù)圖象(0≤t≤200),請(qǐng)?jiān)谕蛔鴺?biāo)系中用實(shí)線畫出甲離A端的距離s與運(yùn)動(dòng)時(shí)間t之間的函數(shù)圖象(0≤t≤200);
(2)根據(jù)(1)中所畫圖象,完成下列表格:
兩人相遇次數(shù) | 1 | 2 | 3 | 4 | … | n |
兩人所跑路程之和 | 100 | 300 | … |
|
(3)①直接寫出甲、乙兩人分別在第一個(gè)100m內(nèi),s與t的函數(shù)解析式,并指出自變量t的取值范圍;
②當(dāng)t=390s時(shí),他們此時(shí)相遇嗎?若相遇,應(yīng)是第幾次?若不相遇,請(qǐng)通過計(jì)算說明理由,并求出此時(shí)甲離A端的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com