解:(1)∵關于x的一元二次方程x
2-4x+2(k-1)=0有兩個不相等的實數(shù)根,
∴△=b
2-4ac=(-4)
2-4×1×2(k-1)=-8k+24>0,
解得:k<3,
∴k的取值范圍為k<3;
(2)∵k<3且k為正整數(shù),
∴k=1或2.
當k=1時,y=x
2-4x,與x軸交于點(0,0)、(4,0),符合題意;
當k=2時,y=x
2-4x+2,與x軸的交點不是整數(shù)點,故舍去.
綜上所述,k=1.

(3)當b>0,如圖,過點C作CF⊥x軸于點F,過點B作BE⊥x軸于點E,
由(2)得:k=1,
∴直線的解析式為:y=-x+b,
∵直線與x軸、y軸分別交于點A、D,
∴點A(b,0),點D(0,b),
∴∠OAD=∠ODA=45°,
∴△ACF與△ABE是等腰直角三角形,
∴AC=

AF,AB=

AE,
∵AB•AC=4,
∴

AF•

AE=4,
即AF•AE=2,
∵直線y=-x+b與x軸、y軸分別交于點A、D,與雙曲線

(n>0)交于點B、C,
設B(x
1,y
1),C(x
2,y
2),
∴x
1與x
2是-x+b=

的解,
即x
2-bx+n=0,
∴x
1+x
2=b,x
1•x
2=n,
∵AE=b-x
1,AF=b-x
2,
∴(b-x
1)(b-x
2)=2,
即b
2-b(x
1+x
2)+x
1•x
2=n=2;
當b<0時,同理可得:n=2.
綜上可得:n=2.
分析:(1)由關于x的一元二次方程x
2-4x+2(k-1)=0有兩個不相等的實數(shù)根,可得△=b
2-4ac=(-4)
2-4×1×2(k-1)=-8k+24>0,繼而求得k的取值范圍;
(2)由方程的兩個根均為整數(shù),求正整數(shù)k的值,根據(jù)(1),分別討論k=2與k=1的情況,即可求得答案;
(3)首先過點C作CF⊥x軸于點F,過點B作BE⊥x軸于點E,易得△ACF與△ABE是等腰直角三角形,則可得AC=

AF,AB=

AE,求得AF•AE=2,然后由線y=-x+b與x軸、y軸分別交于點A、D,與雙曲線

(n>0)交于點B、C,可得設B(x
1,y
1),C(x
2,y
2),即可得x
1與x
2是-x+b=

的解,繼而求得x
1+x
2=b,x
1•x
2=n,又由AE=b-x
1,AF=b-x
2,則可得(b-x
1)(b-x
2)=2,繼而求得答案.
點評:此題考查了反比例函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)、一元二次方程的判別式以及根與系數(shù)的關系.此題難度較大,綜合性很強,注意掌握方程思想、分類討論思想與數(shù)形結合思想的應用.