【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設(shè)每件童裝降價x元時,每天可銷售件,每件盈利元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
【答案】
(1)20+2x,40-x
(2)解:依題可得:(20+2x)(40-x)=1200,
∴x2-30x+200=0,
∴(x-10)(x-20)=0,
∴x1=10,x2=20,
答:每件童裝降價10元或20元時,平均每天贏利1200元.
(3)解:(20+2x)(40-x)=2000,
∴x2-30x+600=0,
∴△=b2-4ac=(-30)2-4×1×600=-15000,
∴原方程無解.
答:不可能平均每天贏利2000元.
【解析】解:(1)依題可得:
每天可銷售:20+2x件,每件盈利:40-x元,
(1)根據(jù)銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進(jìn)價-降價,列式即可.
(2)根據(jù)總利潤=每件利潤×銷售數(shù)量,列方程求解即可.
(3)根據(jù)(2)中相關(guān)關(guān)系列方程,判斷方程有無實數(shù)根即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題不正確的是( )
A.0是整式
B.x=0是一元一次方程
C.(x+1)(x﹣1)=x2+x是一元二次方程
D. 是二次根式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當(dāng)點D的對應(yīng)點F剛好落在線段AB的垂直平分線上時,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系上,已知點A(8,4),AB⊥y軸于B,AC⊥x軸于C,直線y=x交AB于D.
(1)直接寫出B、C、D三點坐標(biāo);
(2)若E為OD延長線上一動點,記點E橫坐標(biāo)為a,△BCE的面積為S,求S與a的關(guān)系式;
(3)當(dāng)S=20時,過點E作EF⊥AB于F,G、H分別為AC、CB上動點,求FG+GH的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,將理由補充完整.
如圖,于,于,,求證:.
證明:∵,(已知)
∴(垂直的定義)
∴(________________________)
∴(________________________)
∵(已知)
又∵(________________________)
∴(________________________)
∴(________________________)
∴(________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣城要鋪一條自來水管道,決定由甲、乙兩個工程隊來完成這一工程,已知甲工程隊比乙工程隊每天多鋪10m,且甲工程隊鋪設(shè)350m所用的天數(shù)與乙工程隊鋪設(shè)250m所用的天數(shù)相同甲、乙兩個工程隊每天各能鋪設(shè)多少米管道?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com