【題目】如圖,將一等邊三角形的三條邊各8等分,按順時(shí)針方向(圖中箭頭方向)標(biāo)注各等分點(diǎn)的序號(hào)0、1、2、3、4、5、6、7、8,將不同邊上的序號(hào)和為8的兩點(diǎn)依次連接起來,這樣就建立了“三角形”坐標(biāo)系.在建立的“三角形”坐標(biāo)系內(nèi),每一點(diǎn)的坐標(biāo)用過這一點(diǎn)且平行(或重合)于原三角形三條邊的直線與三邊交點(diǎn)的序號(hào)來表示(水平方向開始,按順時(shí)針方向),如點(diǎn)的坐標(biāo)可表示為(1,2,5),點(diǎn)的坐標(biāo)可表示為(4,1,3),按此方法,則點(diǎn)的坐標(biāo)可表示為( )
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對(duì)角線BD于點(diǎn)F,則S△CDF:S四邊形ABFE等于( 。
A. 1:3 B. 2:5 C. 3:5 D. 4:9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),當(dāng)時(shí),,則此函數(shù)與軸的交點(diǎn)坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,是等邊三角形,是邊上一點(diǎn),平行交于點(diǎn).
(1)求證:是等邊三角形
(2)連接,延長至點(diǎn),使得,如圖②.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一條道路上,甲車從地到地,乙車從地到地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離(千米)與行駛時(shí)間(小時(shí))的函數(shù)關(guān)系的圖象,根據(jù)圖象解決以下問題:
(1)乙先出發(fā)的時(shí)間為 小時(shí),乙車的速度為 千米/時(shí);
(2)求線段的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)甲、乙兩車誰先到終點(diǎn),先到多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對(duì)角線BD對(duì)折,點(diǎn)C落在點(diǎn)C′的位置,BC′交AD于點(diǎn)G.
(1)求證:AG=C′G;
(2) 求△BDG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識(shí)背景
我們?cè)诘谑徽隆度切巍分袑W(xué)習(xí)了三角形的邊與角的性質(zhì),在第十二章《全等三角形》中學(xué)習(xí)了全等三角形的性質(zhì)和判定,在十三章《軸對(duì)稱》中學(xué)習(xí)了等腰三角形的性質(zhì)和判定.在一些探究題中經(jīng)常用以上知識(shí)轉(zhuǎn)化角和邊,進(jìn)而解決問題
問題初探
如圖(1),△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC上一點(diǎn),連接AD,以AD為一邊作△ADE,使∠DAE=90°,AD=AE,連接BE,猜想BE和CD有怎樣的數(shù)量關(guān)系,并說明理由.
類比再探
如圖(2),△ABC中,∠BAC=90°,AB=AC,點(diǎn)M是AB上一點(diǎn),點(diǎn)D是BC上一點(diǎn),連接MD,以MD為一邊作△MDE,使∠DME=90°,MD=ME,連接BE,則∠EBD= .(直接寫出答案,不寫過程,但要求作出輔助線)
方法遷移
如圖(3),△ABC是等邊三角形,點(diǎn)D是BC上一點(diǎn),連接AD,以AD為一邊作等邊三角形ADE,連接BE,則BD、BE、BC之間有怎樣的數(shù)量關(guān)系? (直接寫出答案,不寫過程).
拓展創(chuàng)新
如圖(4),△ABC是等邊三角形,點(diǎn)M是AB上一點(diǎn),點(diǎn)D是BC上一點(diǎn),連接MD,以MD為一邊作等邊三角形MDE,連接BE.猜想∠EBD的度數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )
A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com