(2009•長春)某工程隊承接了3000米的修路任務,在修好600米后,引進了新設備,工作效率是原來的2倍,一共用30天完成了任務.求引進新設備前平均每天修路多少米?
【答案】分析:求的是新工效,工作總量為3000,一定是根據(jù)工作時間來列等量關系.本題的關鍵描述語是:“一共用30天完成了任務”;等量關系為:600米所用時間+剩余米數(shù)所用時間=30.
解答:解:設引進新設備前平均每天修路x米.
根據(jù)題意,得:.(3分)
解得:x=60.
經檢驗:x=60是原方程的解,且符合題意.
答:引進新設備前平均每天修路60米.(5分)
點評:應用題中一般有三個量,求一個量,明顯的有一個量,一定是根據(jù)另一量來列等量關系的.本題考查分式方程的應用,分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•長春)某部隊甲、乙兩班參加植樹活動.乙班先植樹30棵,然后甲班才開始與乙班一起植樹.設甲班植樹的總量為y(棵),乙班植樹的總量為y(棵),兩班一起植樹所用的時間(從甲班開始植樹時計時)為x(時).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當0≤x≤6時,分別求y、y與x之間的函數(shù)關系式.
(2)如果甲、乙兩班均保持前6個小時的工作效率,通過計算說明,當x=8時,甲、乙兩班植樹的總量之和能否超過260棵?
(3)如果6個小時后,甲班保持前6個小時的工作效率,乙班通過增加人數(shù),提高了工作效率,這樣繼續(xù)植樹2小時,活動結束.當x=8時,兩班之間植樹的總量相差20棵,求乙班增加人數(shù)后平均每小時植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省泰安市寧陽縣中考數(shù)學模擬試卷(6)(解析版) 題型:解答題

(2009•長春)某部隊甲、乙兩班參加植樹活動.乙班先植樹30棵,然后甲班才開始與乙班一起植樹.設甲班植樹的總量為y(棵),乙班植樹的總量為y(棵),兩班一起植樹所用的時間(從甲班開始植樹時計時)為x(時).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當0≤x≤6時,分別求y、y與x之間的函數(shù)關系式.
(2)如果甲、乙兩班均保持前6個小時的工作效率,通過計算說明,當x=8時,甲、乙兩班植樹的總量之和能否超過260棵?
(3)如果6個小時后,甲班保持前6個小時的工作效率,乙班通過增加人數(shù),提高了工作效率,這樣繼續(xù)植樹2小時,活動結束.當x=8時,兩班之間植樹的總量相差20棵,求乙班增加人數(shù)后平均每小時植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學模擬試卷(7)(解析版) 題型:解答題

(2009•長春)某部隊甲、乙兩班參加植樹活動.乙班先植樹30棵,然后甲班才開始與乙班一起植樹.設甲班植樹的總量為y(棵),乙班植樹的總量為y(棵),兩班一起植樹所用的時間(從甲班開始植樹時計時)為x(時).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當0≤x≤6時,分別求y、y與x之間的函數(shù)關系式.
(2)如果甲、乙兩班均保持前6個小時的工作效率,通過計算說明,當x=8時,甲、乙兩班植樹的總量之和能否超過260棵?
(3)如果6個小時后,甲班保持前6個小時的工作效率,乙班通過增加人數(shù),提高了工作效率,這樣繼續(xù)植樹2小時,活動結束.當x=8時,兩班之間植樹的總量相差20棵,求乙班增加人數(shù)后平均每小時植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省某市新人教版中考數(shù)學模擬試卷(6)(解析版) 題型:解答題

(2009•長春)某部隊甲、乙兩班參加植樹活動.乙班先植樹30棵,然后甲班才開始與乙班一起植樹.設甲班植樹的總量為y(棵),乙班植樹的總量為y(棵),兩班一起植樹所用的時間(從甲班開始植樹時計時)為x(時).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當0≤x≤6時,分別求y、y與x之間的函數(shù)關系式.
(2)如果甲、乙兩班均保持前6個小時的工作效率,通過計算說明,當x=8時,甲、乙兩班植樹的總量之和能否超過260棵?
(3)如果6個小時后,甲班保持前6個小時的工作效率,乙班通過增加人數(shù),提高了工作效率,這樣繼續(xù)植樹2小時,活動結束.當x=8時,兩班之間植樹的總量相差20棵,求乙班增加人數(shù)后平均每小時植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年吉林省長春市中考數(shù)學試卷(解析版) 題型:解答題

(2009•長春)某部隊甲、乙兩班參加植樹活動.乙班先植樹30棵,然后甲班才開始與乙班一起植樹.設甲班植樹的總量為y(棵),乙班植樹的總量為y(棵),兩班一起植樹所用的時間(從甲班開始植樹時計時)為x(時).y、y分別與x之間的部分函數(shù)圖象如圖所示.
(1)當0≤x≤6時,分別求y、y與x之間的函數(shù)關系式.
(2)如果甲、乙兩班均保持前6個小時的工作效率,通過計算說明,當x=8時,甲、乙兩班植樹的總量之和能否超過260棵?
(3)如果6個小時后,甲班保持前6個小時的工作效率,乙班通過增加人數(shù),提高了工作效率,這樣繼續(xù)植樹2小時,活動結束.當x=8時,兩班之間植樹的總量相差20棵,求乙班增加人數(shù)后平均每小時植樹多少棵?

查看答案和解析>>

同步練習冊答案