如圖,AB切⊙O于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧長為    .(結(jié)果保留π)
【答案】分析:連接OB,OC,由AB為圓的切線,利用切線的性質(zhì)得到三角形AOB為直角三角形,根據(jù)30度所對的直角邊等于斜邊的一半,由OA求出OB的長,且∠AOB為60度,再由BC與OA平行,利用兩直線平行內(nèi)錯(cuò)角相等得到∠OBC為60度,又OB=OC,得到三角形BOC為等邊三角形,確定出∠BOC為60度,利用弧長公式即可求出劣弧BC的長.
解答:解:連接OB,OC,
∵AB為圓O的切線,
∴∠ABO=90°,
在Rt△ABO中,OA=2,∠OAB=30°,
∴OB=1,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC為等邊三角形,
∴∠BOC=60°,
則劣弧長為=π.
故答案為:π
點(diǎn)評:此題考查了切線的性質(zhì),含30度直角三角形的性質(zhì),以及弧長公式,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB切⊙O于點(diǎn)B,OA與⊙O交于點(diǎn)C,點(diǎn)P在⊙O上,若∠BAC=40°,則∠BPC的度數(shù)為( 。
A、20°B、25°C、30°D、40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB切⊙O于點(diǎn)B,OA=2
3
,AB=3,弦BC∥OA,則劣弧BC的弧長為(  )
A、
3
3
π
B、
3
2
π
C、π
D、
3
2
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB切⊙O于點(diǎn)B,AB=4cm,AO=6cm,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西藏)如圖,AB切⊙O于點(diǎn)B,延長AO交⊙O于點(diǎn)C,連接BC.若∠A=40°,則∠C=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)如圖,AB切⊙O于點(diǎn)A,OD⊥弦AC于點(diǎn)D,延長OD,交AB于點(diǎn)B,若∠O=60°,AC=6cm,則AB=
6
6
cm.

查看答案和解析>>

同步練習(xí)冊答案