3.如圖,P是⊙O外一點(diǎn),PC為切線,割線PAB經(jīng)過圓心O.
(1)若PB=12,PC=4$\sqrt{3}$,求⊙O的半徑長(zhǎng);
(2)作∠BPC的角平分線交BC于D,求∠CDP的度數(shù).

分析 (1)連結(jié)OC,如圖,設(shè)⊙O的半徑為r,則OC=r,PO=PB-OB=12-r,根據(jù)切線的性質(zhì)得∠PCO=90°,則利用勾股定理得到r2+(4$\sqrt{3}$)2=(12-r)2,然后解方程即可;
(2)在Rt△POC中,由于OC=4,OP=8,根據(jù)含30度的直角三角形三邊的關(guān)系得∠OPC=30°,然后根據(jù)角平分線定義得到∠CDP的度數(shù).

解答 解:(1)連結(jié)OC,如圖,設(shè)⊙O的半徑為r,則OC=r,PO=PB-OB=12-r,
∵PC為切線,
∴OC⊥PC,
∴∠PCO=90°,
在Rt△POC中,∵OC2+PC2=PO2,
∴r2+(4$\sqrt{3}$)2=(12-r)2,解得r=4,
即⊙O的半徑為4;
(2)在Rt△POC中,∵OC=4,PO=8,
∴∠OPC=30°,
∵PD平分∠BPC,
∴∠CDP=15°.

點(diǎn)評(píng) 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.當(dāng)x=$\frac{1}{4}$時(shí),求$\frac{x\sqrt{4x}}{2}$+6x$\sqrt{\frac{x}{9}}$-2x2$\sqrt{\frac{1}{x}}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.某股民上星期五買進(jìn)某公司股票1000股,每股25元,下表為本周內(nèi)每日該股票的漲跌情況:(單價(jià):元)
星期
每股漲跌
(與前一天比較)
+2-0.5+1.5-1.8+0.8
(1)星期三收盤時(shí),每股是多少元?
(2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(3)已知該股民買進(jìn)股票時(shí)付了0.15%的手續(xù)費(fèi),賣出時(shí)需付成交額0.15%的手續(xù)費(fèi)和0.1‰的交易稅,如果他一直觀望到星期五才將股票全部賣出,請(qǐng)算算他本周的收益如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.先化簡(jiǎn),再求值:($\frac{{x}^{2}}{x-1}$-$\frac{{x}^{2}}{1-x}$)÷$\frac{2x}{{x}^{2}-1}$,其中x為方程x2+x-3=0的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.如圖,已知AB⊥CD,垂足為B,EF是經(jīng)過B點(diǎn)的一條直線,∠EBD=145°,則∠ABF的度數(shù)為55°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.下列運(yùn)算正確的是( 。
A.若x=y,則$\frac{x}{a}$=$\frac{y}{a}$B.若$\frac{x}{y}$(y≠0),則$\frac{xy}{{y}^{2}}$
C.若$\frac{x}{y}$(y≠0),則$\frac{x+a}{y+a}$D.若x2=y2,則x=y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.若a=b,則下列結(jié)論中不一定成立的是( 。
A.2a=a+bB.a-b=0C.a2=abD.$\frac{a}=1$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.一個(gè)圓錐的底面半徑為10cm,母線長(zhǎng)為20cm,則該圓錐的側(cè)面積是200πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖①,已知二次函數(shù)y=-x2+2x+3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.
(1)求△ABC的面積.
(2)點(diǎn)M在OB邊上以每秒1個(gè)單位的速度從點(diǎn)O向點(diǎn)B運(yùn)動(dòng),點(diǎn)N在BC邊上以每秒$\sqrt{2}$個(gè)單位得速度從點(diǎn)B向點(diǎn)C運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)開始運(yùn)動(dòng),同時(shí)停止.設(shè)運(yùn)動(dòng)的時(shí)間為t秒,試求當(dāng)t為何值時(shí),以B、M、N為頂點(diǎn)的三角形與△BOC相似?
(3)如圖②,點(diǎn)P為拋物線上的動(dòng)點(diǎn),點(diǎn)Q為對(duì)稱軸上的動(dòng)點(diǎn),是否存在點(diǎn)P、Q,使得以P、Q、C、B為頂點(diǎn)的四邊形是平行四變形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案