【題目】如圖,在ABE中,C為邊AB延長線上一點,BC=AE,點D在∠EBC內(nèi)部,且∠EBD=A=DCB.

(1)求證:ABE≌△CDB.

(2)連結(jié)DE,若∠CDB=60°,AEB=50°,求∠BDE的度數(shù).

【答案】(1)見解析;(2)55o

【解析】

1)利用∠ABE+EBD+DBC=180,A+AEB+EBA=180°,的關(guān)系, 求出∠BDC=EBA,再利用AAS證明ABE≌△CDB.

( 2 )利用ABE≌△CDB,得出BE=DB,即∠BED=BDE,再利用∠ABE+EBD+BDC=180°之間的關(guān)系求出∠EBD的度數(shù).

證明:(1)∵∠ABE+EBD+DBC=180°,A+AEB+EBA=180°,

∵∠EBD=A=DCB,

∴∠EBA=DBC,

ABECDB,

∴△ABE≌△CDB(AAS),

(2)∵△ABE≌△CDB,

BE=DB,AEB=DBC,

∵∠CDB=60°,AEB=50°,

∴∠DBC=50°,

∴∠C=180°﹣60°﹣50°=70°,

∴∠EBD=DCB=70°,

∴∠BDE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠C=90°,AC=3cm,BC=4cm,點P是邊BC上由BC運動(不與點B、C重合)的一動點,P點的速度是1cm/s,設(shè)點P的運動時間為t,過P點作AC的平行線交AB與點N,連接AP,

(1)請用含有t的代數(shù)式表示線段AN和線段PN的長,

(2)當(dāng)t為何值時,△APN的面積等于△ACP面積的三分之一?

(3)在點P的運動過程中,是否存在某一時刻的t的值,使得△APN的面積有最大值,若存在請求出t的值并計算最大面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在邊長為4cm的正方形ABCD中,點P以每秒2cm的速度從點A出發(fā),沿AB→BC的路徑運動,到點C停止.過點PPQBD,PQ與邊AD(或邊CD)交于點Q,PQ的長度y(cm)與點P的運動時間x(秒)的函數(shù)圖象如圖②所示.當(dāng)點P運動2.5秒時,PQ的長度是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,完成(1-3)題
數(shù)學(xué)課上,老師出示了這樣一道題:如圖, 中,,點P為邊AB上一點(不與A、B重合),過PQ,做QEABBC于點E,連接PE,將線段PE繞點P順時針旋轉(zhuǎn)90°到PF,連接QF,探究線段之間的數(shù)量關(guān)系并證明.
同學(xué)們經(jīng)過思考后,交流了自已的想法
小明:“通過觀察和度量,發(fā)現(xiàn)為直角.”
小偉:“我通過一線三直角的模型構(gòu)造三角形全等可以解決問題.”
小強:“我構(gòu)造等腰直角三角形,再利用全等三角形可以解決問題.”
老師:“若其他條件不變,PE=AC,就可以求出的值.”
1多少度?四邊形為什么特殊四邊形?(直接寫出答案)
2)探究線段之間的數(shù)量關(guān)系并證明;
3)若其他條件不變,PE=AC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線是常數(shù))的頂點為,直線

求證:點在直線上;

當(dāng)時,拋物線與軸交于,兩點,與軸交于點,與直線的另一個交點為軸下方拋物線上的一點,(如圖),求點的坐標(biāo);

若以拋物線和直線的兩個交點及坐標(biāo)原點為頂點的三角形是等腰三角形,請直接寫出所有符合條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王爺爺家院子里有一塊三角形田地ABC,AB=AC=5米,BC=6米,現(xiàn)打算把它開墾出一個矩形MNFE區(qū)域種植韭菜,AMN區(qū)域種植芹菜,CMEBNF區(qū)域種植青菜(開墾土地面積損耗均忽略不計),其中點M,N分別在AC,AB上,點E,F(xiàn)BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,設(shè)CM=5x米,王爺爺?shù)氖卟丝偸找鏋?/span>W元.

(1)當(dāng)矩形MNFE恰好為正方形時,求韭菜種植區(qū)域矩形MNFE的面積.

(2)若種植韭菜的收益等于另兩種蔬菜收益之和的2倍,求這時x的值.

(3)求王爺爺?shù)氖卟丝偸找鏋?/span>W關(guān)于x的函數(shù)表達式及W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸、軸分別交于點、,與雙曲線交于第一象限的點和第三象限的點,點的縱坐標(biāo)為

的值;

求不等式:的解集

軸上的點作平行于軸的直線,分別與直線和雙曲線交于點、,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)某批發(fā)商以每件50元的價格購進800T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預(yù)計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.

1)填表:(不需化簡)

2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P(3m6,m1),試分別根據(jù)下列條件,求出點P的坐標(biāo).

(1)P的橫坐標(biāo)比縱坐標(biāo)大1;

(2)P在過點A(3,-2),且與x軸平行的直線上;

(3)Py軸的距離是到x軸距離的2倍.

查看答案和解析>>

同步練習(xí)冊答案