如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點C和AE的中點D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.
【答案】分析:(1)過點C作CG⊥OA于點G,根據(jù)等邊三角形的性質(zhì)求出OG、CG的長度,從而得到點C的坐標,再利用 待定系數(shù)法求反比例函數(shù)解析式列式計算即可得解;
(2)過點D作DH⊥AF于點H,設AH=a,根據(jù)等邊三角形的性質(zhì)表示出DH的長度,然后表示出點D的坐標,再把點D的坐標代入反比例函數(shù)解析式,解方程得到a的值,從而得解.
解答:解:(1)過點C作CG⊥OA于點G,
∵點C是等邊△OAB的邊OB的中點,
∴OC=2,∠AOB=60°,
∴OG=1,CG=OG•tan60°=1•=,
∴點C的坐標是(1,),
=,得:k=,
∴該雙曲線所表示的函數(shù)解析式為y=;

(2)過點D作DH⊥AF于點H,設AH=a,則DH=a.
∴點D的坐標為(4+a,),
∵點D是雙曲線y=上的點,
由xy=,得(4+a)=
即:a2+4a-1=0,
解得:a1=-2,a2=--2(舍去),
∴AD=2AH=2-4,
∴等邊△AEF的邊長是2AD=4-8.
點評:本題是對反比例函數(shù)的綜合考查,包括待定系數(shù)法求反比例函數(shù)解析式,等邊三角形的性質(zhì),解一元二次方程,難度不大,作出輔助線,表示出點C、D的坐標是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•麗水)如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=
kx
(k>0)經(jīng)過邊OB的中點C和AE的中點D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y= (k>0)經(jīng)過邊OB的中點C和AE的中點D.已知等邊△OAB的邊長為4.

(1)求該雙曲線所表示的函數(shù)解析式;

(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江省杭州市蕭山區(qū)瓜瀝一中九年級(上)月考數(shù)學試卷(10月份)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點C和AE的中點D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙教版九年級(上)第一次月考數(shù)學試卷(六)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點C和AE的中點D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年四川省瀘州市藍田中學中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點C和AE的中點D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

同步練習冊答案