【題目】在平面直角坐標系xOy中,點A、B為反比例函數(shù)的圖像上兩點,A點的橫坐標與B點的縱坐標均為1,將的圖像繞原點O順時針旋轉90°,A點的對應點為A’,B點的對應點為B’.
(1)點A’的坐標是 ,點B’的坐標是 ;
(2)在x軸上取一點P,使得PA+PB的值最小,直接寫出點P的坐標. 此時在反比例函數(shù)的圖像上是否存在一點Q,使△A’B’Q的面積與△PAB的面積相等,若存在,求出點Q的橫坐標;若不存在,請說明理由;
(3)連接AB’,動點M從A點出發(fā)沿線段AB’以每秒1個單位長度的速度向終點B’運動;動點N同時從B’點出發(fā)沿線段B’A’以每秒1個單位長度的速度向終點A’運動.當其中一個點停止運動時,另一個點也隨之停止運動.設運動的時間為t秒,試探究:是否存在使△MNB’為等腰直角三角形的t值.若存在,求出t的值;若不存在,說明理由.
【答案】(1)(4,﹣1),(1,﹣4);(2)存在,;(3)存在,8﹣8
【解析】
(1)利用旋轉的性質即可解決問題;
(2)由題意A和B′關于x軸對稱,B和A′關于x軸對稱,連接BB′交x軸于P,連接AP,此時PA+PB的值最小,因為直線BB′的解析式為,根據(jù)A′B′的解析式得到p點的坐標,最后利用面積相等求出PQ的解析式,解方程組即可得到答案;
(3)分兩種情形分別求解即可解決問題;
解:(1)∵點A、B為反比例函數(shù)的圖像上兩點,
A點的橫坐標與B點的縱坐標均為1,
∴得到:A(1,4),B(4,1),
根據(jù)旋轉的性質可知(4,-1),(1,-4);
故答案為(4,-1),(1,-4);
(2)∵A(1,4),B(4,1),根據(jù)旋轉的性質可知(4,-1),(1,-4),
∴A和關于x軸對稱,B和關于x軸對稱,
連接BB′交x軸于P,連接AP,此時PA+PB的值最小,
∵直線BB′的解析式為,
∴P(,0),
過點P作PQ∥A′B′交y=于Q,如圖
∴S△PA’B’=S△QA’B’,
∴直線PQ的解析式為y=x﹣,
根據(jù),消去y得到:,
解得或者(舍去)
∴點Q的橫坐標為.
(3)如圖:
①當時,,
∴8﹣t=t,
∴解得:t=8﹣8.
②當時,
∴t=(8﹣t),
∴解得:t=16﹣8(不合題意),
綜上,t=()s時,是等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結AM、BM.
(1)求拋物線的函數(shù)關系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有不動點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科技館是少年兒童節(jié)假日游玩的樂園.
如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經過的時間(分鐘),縱坐標y表示到達科技館的總人數(shù).圖中曲線對應的函數(shù)解析式為y=,10:00之后來的游客較少可忽略不計.
(1)請寫出圖中曲線對應的函數(shù)解析式;
(2)為保證科技館內游客的游玩質量,館內人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內陸續(xù)有人離館,平均每分鐘離館4人,直到館內人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個點在第一象限及軸、軸上運動,在第一秒鐘,它從原點運動到,然后接著按圖中箭頭所示方向運動,即→→→,…,且每秒移動一個單位,到用時2秒,到點用時6秒,到點用時12秒,…,那么到點用時________秒,第931秒時這個點所在位置坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以A、B為圓心,大于AB的長為半徑畫弧,兩弧相交于點M、N;②作直線MN交AC于點D,連接BD.若CD=CB,∠A=35°,則∠C等于( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】藏族小伙小游到批發(fā)市場購買牛肉,已知牦牛肉和黃牛肉的單價之和為每千克44元,小游準備購買牦牛肉和黃牛肉總共不超過120千克,其中黃牛肉至少購買30千克,牦牛肉的數(shù)量不少于黃牛肉的2倍,粗心的小游在做預算時將牦牛肉和黃牛肉的價格弄對換了,結果實際購買兩種牛肉的總價比預算多了224元,若牦牛肉、黃牛肉的單價和數(shù)量均為整數(shù),則小游實際購買這兩種牛肉最多需要花費______元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為( )
A. 3 B. 6 C. 4 D. 8
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com