【題目】“皮克定理”是用來計算頂點(diǎn)在整點(diǎn)的多邊形面積的公式,公式表達(dá)式為S=a+ ﹣1,孔明只記得公式中的S表示多邊形的面積,a和b中有一個表示多邊形邊上(含頂點(diǎn))的整點(diǎn)個數(shù),另一個表示多邊形內(nèi)部的整點(diǎn)個數(shù),但不記得究竟是a還是b表示多邊形內(nèi)部的整點(diǎn)個數(shù),請你選擇一些特殊的多邊形(如圖1)進(jìn)行驗(yàn)證,得到公式中表示多邊形內(nèi)部的整點(diǎn)個數(shù)的字母是 , 并運(yùn)用這個公式求得圖2中多邊形的面積是 .
【答案】a;17.5
【解析】解:如圖1,
∵三角形內(nèi)由1個格點(diǎn),邊上有8個格點(diǎn),面積為4,即4=1+ ﹣1;
矩形內(nèi)由2個格點(diǎn),邊上有10個格點(diǎn),面積為6,即6=2+ ﹣1;
∴公式中表示多邊形內(nèi)部整點(diǎn)個數(shù)的字母是a;
圖2中,a=15,b=7,故S=15+ ﹣1=17.5.
故答案為:a,17.5.
分別找到圖1中圖形內(nèi)的格點(diǎn)數(shù)和圖形上的格點(diǎn)數(shù)后與公式比較后即可發(fā)現(xiàn)表示圖上的格點(diǎn)數(shù)的字母,圖2中代入有關(guān)數(shù)據(jù)即可求得圖形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設(shè)他從山腳出發(fā)后所用的時間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是( )
A.小明中途休息用了20分鐘
B.小明休息前爬山的平均速度為每分鐘70米
C.小明在上述過程中所走的路程為6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙在400米的直線跑道上從同一地點(diǎn)同向勻速跑步,先到終點(diǎn)的人原地休息.已知甲先出發(fā)3秒,跑步過程中兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )
A. 乙的速度是4米/秒
B. 離開起點(diǎn)后,甲、乙兩人第一次相遇時,距離起點(diǎn)12米
C. 甲從起點(diǎn)到終點(diǎn)共用時83秒
D. 乙到達(dá)終點(diǎn)時,甲、乙兩人相距68米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用半徑為2cm的半圓圍成一個圓錐的側(cè)面,這個圓錐的底面半徑為( )
A. 1cm B. 2cm C. πcm D. 2πcm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品現(xiàn)在的售價為每件60元,每星期可賣出300件.市場調(diào)查反映:每降價1元,每星期可多賣出20件.已知商品的進(jìn)價為每件40元,在顧客得實(shí)惠的前提下,商家還想獲得6080元的利潤,應(yīng)將銷售單價定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過點(diǎn)A作AE⊥CD,交CD的延長線于點(diǎn)E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=32cm,DE是AB的垂直平分線,分別交AB、AC于D、E兩點(diǎn).(1)若∠C=70°,則∠BEC=______度;(2)若BC=21cm,則△BCE的周長是______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a,b都是實(shí)數(shù),且a<b,則下列不等式的變形正確的是( )
A.a+x>b+x
B.﹣a+1<﹣b+1
C.3a<3b
D. >
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com