【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線(xiàn)MNAB,DAB邊上一點(diǎn),過(guò)點(diǎn)DDEBC,交直線(xiàn)MNE,垂足為F,連接CDBE

(1)求證:CEAD

(2)當(dāng)DAB中點(diǎn)時(shí).

①求證:四邊形BECD是菱形;
②當(dāng)∠A為多少度時(shí),四邊形BECD是正方形?說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)四邊形BECD是菱形,理由見(jiàn)解析;(3)當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由見(jiàn)解析.

【解析】試題分析:(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.

試題解析:(1)∵DE⊥BC, ∴∠DFB=90°, ∵∠ACB=90°, ∴∠ACB=∠DFB,

∴AC∥DE, ∵M(jìn)N∥AB,即CE∥AD, 四邊形ADEC是平行四邊形, ∴CE=AD

(2)四邊形BECD是菱形, 理由是:∵DAB中點(diǎn), ∴AD=BD, ∵CE=AD

∴BD=CE, ∵BD∥CE四邊形BECD是平行四邊形, ∵∠ACB=90°,DAB中點(diǎn),

∴CD=BD四邊形BECD是菱形;

(3)當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由是: 解:∵∠ACB=90°∠A=45°

∴∠ABC=∠A=45°∴AC=BC, ∵DBA中點(diǎn), ∴CD⊥AB, ∴∠CDB=90°,

四邊形BECD是菱形, 菱形BECD是正方形, 即當(dāng)∠A=45°時(shí),四邊形BECD是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題提出)

求證:如果一個(gè)定圓的內(nèi)接四邊形對(duì)角線(xiàn)互相垂直,那么這個(gè)四邊形每組對(duì)邊的平方和是一個(gè)定值.

(從特殊入手)

我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.請(qǐng)你在圖①中補(bǔ)全特殊位置時(shí)的圖形,并借助于所畫(huà)圖形探究問(wèn)題的結(jié)論.

(問(wèn)題解決)

已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn),直線(xiàn)分別與,相交于點(diǎn)、,小宇同學(xué)利用尺規(guī)按以下步驟作圖:①以點(diǎn)為圓心,以任意長(zhǎng)為半徑作弧交于點(diǎn),交于點(diǎn)②分別以,為圓心,以大于,長(zhǎng)為半徑作弧,兩弧在內(nèi)交于點(diǎn);③作射線(xiàn)于點(diǎn),若,則____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黔東南州某校吳老師組織九(1)班同學(xué)開(kāi)展數(shù)學(xué)活動(dòng),帶領(lǐng)同學(xué)們測(cè)量學(xué)校附近一電線(xiàn)桿的高.已知電線(xiàn)桿直立于地面上,某天在太陽(yáng)光的照射下,電線(xiàn)桿的影子(折線(xiàn)BCD)恰好落在水平地面和斜坡上,在D處測(cè)得電線(xiàn)桿頂端A的仰角為30°,在C處測(cè)得電線(xiàn)桿頂端A得仰角為45°,斜坡與地面成60°角,CD=4m,請(qǐng)你根據(jù)這些數(shù)據(jù)求電線(xiàn)桿的高AB.

(結(jié)果精確到1m,參考數(shù)據(jù):1.4,1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文化,源遠(yuǎn)流長(zhǎng),《西游記》《三國(guó)演義》《水滸傳》《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱(chēng)為四大古典名著.某校要求沒(méi)有讀過(guò)四大名著的學(xué)生進(jìn)行選讀,將《西游記》、《三國(guó)演義》、《水滸傳》《紅樓夢(mèng)》依次記為A、B、C、D,每本名著被選到的機(jī)會(huì)均等.

(1)學(xué)生小紅計(jì)劃選讀兩本名著,她恰好選讀《西游記》和《水滸傳》這兩本名著的概率為多少?

(2)若學(xué)生小明和小剛各計(jì)劃選讀一本名著,他們兩人恰好選讀同一本名著的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,一次函數(shù)y1kxbk≠0)和反比例函數(shù)y2m≠0)的圖像交于點(diǎn)A(-1,6)、Ba,-2).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)圖像直接寫(xiě)出y1y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC;

2AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

【拓展延伸】

3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊(duì)先合做15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500元,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC的邊長(zhǎng)為8cm,點(diǎn)P從點(diǎn)C出發(fā),以1cm/秒的速度由CB勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以2cm/秒的速度由CA勻速運(yùn)動(dòng),AP、BQ交于點(diǎn)M,當(dāng)點(diǎn)Q到達(dá)A點(diǎn)時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)PQ兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,若∠AMQ60°時(shí),則t的值是( 。

A.1B.2C.D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案