【題目】如圖,在線段AB上取一點(diǎn)C,分別以AC、BC為邊長作菱形ACDE和菱形BCFG,使點(diǎn)DCF上,連接EG,HEG的中點(diǎn),EG=4,則CH的長是___

【答案】2.

【解析】

連接AD,CE,CG,根據(jù)菱形的性質(zhì)可知ADCE,∠CAD=EAC,∠BCG=BCF,根據(jù)平行線的性質(zhì)可得出∠EAC=BCF,故可得出∠CAD=BCG,所以ADCG,即CECG,再由直角三角形的性質(zhì)即可得出結(jié)論.

解:連接AD,CE,CG

∵四邊形ACDE與四邊形BCFG均是菱形,

ADCE,∠CAD=EAC,∠BCG=BCF

AECF,

∴∠EAC=BCF

∴∠CAD=BCG,

ADCG,

CECG

HEG的中點(diǎn),EG=4

CH=EG=2

故答案為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店第一次用300元購進(jìn)筆記本若干,第二次又用300元購進(jìn)該款筆記本,但這次每本的進(jìn)價(jià)是第一次進(jìn)價(jià)的倍,購進(jìn)數(shù)量比第一次少了25本.

(1)求第一次每本筆記本的進(jìn)價(jià)是多少元?

(2)若要求這兩次購進(jìn)的筆記本按同一價(jià)格全部銷售完畢后獲利不低于450元,問每本筆記本的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,某商場計(jì)劃購進(jìn)甲、乙兩種節(jié)能訂共1200只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

1)如何進(jìn)貨,進(jìn)貨款恰好為46000?

2)為確保乙型節(jié)能燈順利暢銷,在(1)的條件下,商家決定對(duì)乙型節(jié)能燈進(jìn)行打折出售,且全部售完后,乙型節(jié)能燈的利潤率為20%,請(qǐng)同乙型節(jié)能燈需打幾折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知,拋物線(a0)的頂點(diǎn)為A(s,t)(其中s0) .

(1)若拋物線經(jīng)過(2,2)和(-3,37)兩點(diǎn),且s=3.

①求拋物線的解析式;

②若n>3, 設(shè)點(diǎn)M(),N()在拋物線上,比較,的大小關(guān)系,并說明理由;

(2)若a=2,c=-2,直線與拋物線的交于點(diǎn)P和點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為h,點(diǎn)Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;

(3)若點(diǎn)A在拋物線上,且2≤s<3時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)輸360噸化肥,裝載了6輛大卡車和3輛小汽車;運(yùn)輸440噸化肥,裝載了8輛大卡車和2輛小汽車

(1) 每輛大卡車與每輛小汽車平均各裝多少噸化肥?

(2) 現(xiàn)在用大卡車和小汽車一共10輛去裝化肥,要求運(yùn)輸總量不低于300噸,則最少需要幾輛大卡車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2-(2a+1)x+b的圖象經(jīng)過(2,-1)和(-2,7)且與直線y=kx-2k-3相交于點(diǎn)P(m,2m-7)

(1) 求拋物線的解析式

(2) 求直線y=kx-2k-3與拋物線y=ax2-(2a+1)x+b的對(duì)稱軸的交點(diǎn)Q的坐標(biāo)

(3) 在y軸上是否存在點(diǎn)T,使△PQT的一邊中線等于該邊的一半?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC的三個(gè)頂點(diǎn)坐標(biāo)為:A(1,4)B(3,3),C(2,﹣1),三角形ABC內(nèi)有一點(diǎn)P(mn)經(jīng)過平移后的對(duì)應(yīng)點(diǎn)為P1(m3n2),將三角形ABC做同樣平移得到三角形A1B1C1.

1)在圖中畫出三角形A1B1C1 并寫出A1、B1C1三點(diǎn)的坐標(biāo);

2)求三角形A1B1C1的面積.

3)若以AB,CD為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形紙片ABCD中,ABm,ADn,將兩張邊長分別為86的正方形紙片按圖12兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)請(qǐng)用含m的式子表示圖1EF,BF的長;

2)請(qǐng)用含m,n的式子表示圖1,圖2中的S1,S2,若mn3,請(qǐng)問S2S1的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM

(1)求證: DMCE;

(2)AD6,BD8DM2,求AC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案