【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表和圖1:

競(jìng)選人

A

B

C

筆試

85

95

90

口試

80

85


(1)請(qǐng)將表和圖1中的空缺部分補(bǔ)充完整.
(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖2(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),則B在扇形統(tǒng)計(jì)圖中所占的圓心角是度.
(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.

【答案】
(1)解:補(bǔ)充圖形如下:

競(jìng)選人

A

B

C

筆試

85

95

90

口試

90

80

85

;


(2)144°
(3)解:A的投票得分是:300×35%=105(分),則A的最后得分是 =92.5(分);

B的投票得到是:300×40%=120(分),則B的最后得分是 =98(分);

C的投票得分是:300×25%=75(分),則C的最終得分是 =84(分).

所以B當(dāng)選.


【解析】 本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).
(1)結(jié)合表一和圖一可以看出:A大學(xué)生的口試成績(jī)?yōu)?0分,根據(jù)C的筆試成績(jī)是90分即可作圖;
(2)利用B所占的比例乘以360度即可求解;
(3)首先求得A、B、C的投票得分,然后利用加權(quán)平均數(shù)公式即可求解.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解統(tǒng)計(jì)表的相關(guān)知識(shí),掌握制作統(tǒng)計(jì)表的步驟:(1)收集整理數(shù)據(jù).(2)確定統(tǒng)計(jì)表的格式和欄目數(shù)量,根據(jù)紙張大小制成表格.(3)填寫(xiě)欄目、各項(xiàng)目名稱(chēng)及數(shù)據(jù).(4)計(jì)算總計(jì)和合計(jì)并填入表中,一般總計(jì)放在橫欄最左格,合計(jì)放在豎欄最上格.(5)寫(xiě)好表格名稱(chēng)并標(biāo)明制表時(shí)間,以及對(duì)扇形統(tǒng)計(jì)圖的理解,了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.

下面有三個(gè)推斷:
①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;
③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的概率一定是0.620.
其中合理的是( )
A.①
B.②
C.①②
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你補(bǔ)全證明過(guò)程:如圖,DGBC,ACBCEFAB,∠1=2,求證:EFCD

證明:∵DGBC,ACBC(已知)

∴∠DGB=90°,∠ACB=90°①(

∴∠DGB=ACB ( )

DGAC ( )

∴∠2= ________ ⑤(

又∠1=2 ⑥(

∴∠1=DCA ⑦(

EFCD ⑧(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y= +bx+c的圖象如圖所示,對(duì)稱(chēng)軸為直線(xiàn)x=1.有位學(xué)生寫(xiě)出了以下五個(gè)結(jié)論:①ac>0;②方程ax2+bx+c=0的兩根是 =﹣1, =3;③2a﹣b=0;④當(dāng)x>1時(shí),y隨x的增大而減;則以上結(jié)論中正確的有( ).

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“家電下鄉(xiāng)”活動(dòng)期間,凡購(gòu)買(mǎi)指定家用電器的農(nóng)村居民均可得到該商品售價(jià)13%的財(cái)政補(bǔ)貼.村民小李購(gòu)買(mǎi)了一臺(tái)A型洗衣機(jī),小王購(gòu)買(mǎi)了一臺(tái)B型洗衣機(jī)兩人一共得到財(cái)政補(bǔ)貼351元,又知B型洗衣機(jī)售價(jià)比A型洗衣機(jī)售價(jià)多500元.求:

1A型洗衣機(jī)和B型洗衣機(jī)的售價(jià)各是多少元?

2)小李和小王購(gòu)買(mǎi)洗衣機(jī)除財(cái)政補(bǔ)貼外實(shí)際各付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線(xiàn)與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過(guò)點(diǎn)D作DE⊥AC,垂足為F,
DE與AB相交于點(diǎn)E.
(1)求證:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是線(xiàn)段DE上的動(dòng)點(diǎn).設(shè)DP=x cm,梯形BCDP的面積為y
①求y關(guān)于x的函數(shù)關(guān)系式.
②y是否存在最大值?若有求出這個(gè)最大值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在矩形ABCD中,BC8,CD6,將BCD沿對(duì)角線(xiàn)BD翻折,點(diǎn)C落在點(diǎn)C處,BCAD于點(diǎn)E,則BDE的面積為( 。

A. B. C. 21D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊△ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以每分鐘1米的速度由AB和由CA爬行,其中一只蝸牛爬到終點(diǎn)時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過(guò)t分鐘后,它們分別爬行到DE處,請(qǐng)問(wèn):

1)如圖1,在爬行過(guò)程中,CDBE始終相等嗎,請(qǐng)證明?

2)如果將原題中的“由AB和由CA爬行”,改為“沿著ABCA的延長(zhǎng)線(xiàn)爬行”,EBCD交于點(diǎn)Q,其他條件不變,蝸牛爬行過(guò)程中∠CQE的大小保持不變,請(qǐng)利用圖2說(shuō)明:∠CQE=60°;

3)如果將原題中“由CA爬行”改為“沿著BC的延長(zhǎng)線(xiàn)爬行,連接DEACF”,其他條件不變,如圖3,則爬行過(guò)程中,證明:DF=EF

查看答案和解析>>

同步練習(xí)冊(cè)答案