【題目】已知函數(shù)f(x)=sin(ωx+φ)(φ>0,﹣π<φ<0)的最小正周期是π,將f(x)圖象向左平移 個(gè)單位長(zhǎng)度后,所得的函數(shù)圖象過(guò)點(diǎn)P(0,1),則函數(shù)f(x)( )
A.在區(qū)間[﹣ , ]上單調(diào)遞減
B.在區(qū)間[﹣ , ]上單調(diào)遞增
C.在區(qū)間[﹣ , ]上單調(diào)遞減
D.在區(qū)間[﹣ , ]上單調(diào)遞增
【答案】B
【解析】解:∵函數(shù)f(x)=sin(ωx+φ)(φ>0,﹣π<φ<0)的最小正周期是 =π,∴ω=2, 將f(x)=sin(2x+φ)的圖象向左平移 個(gè)單位長(zhǎng)度后,可得y=sin(2x+ +φ)的圖象,
再根據(jù)所的圖象過(guò)點(diǎn)P( 0,1),∴sin( +φ)=1,∴φ=﹣ ,故f(x)=sin(2x﹣ ).
在區(qū)間[﹣ , ]上,2x﹣ ∈[﹣ , ],函數(shù)f(x)在區(qū)間[﹣ , ]上單單調(diào)遞增,
故A錯(cuò)誤,且B正確.
在區(qū)間[﹣ , ]上,2x﹣ ∈[﹣ , ],故函數(shù)f(x)在區(qū)間[﹣ , ]上沒(méi)有單調(diào)性,故排除C、D,
故選:B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=(x2﹣ax+a+1)ex(a∈N)在區(qū)間(1,3)只有1個(gè)極值點(diǎn),則曲線(xiàn)f(x)在點(diǎn)(0,f(0))處切線(xiàn)的方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>0)的焦點(diǎn)在x軸上,且橢圓C的焦距為2. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)R(4,0)的直線(xiàn)l與橢圓C交于兩點(diǎn)P,Q,過(guò)P作PN⊥x軸且與橢圓C交于另一點(diǎn)N,F(xiàn)為橢圓C的右焦點(diǎn),求證:三點(diǎn)N,F(xiàn),Q在同一條直線(xiàn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,點(diǎn) ,曲線(xiàn) .以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系. (Ⅰ)在直角坐標(biāo)系中,求點(diǎn)A,B的直角坐標(biāo)及曲線(xiàn)C的參數(shù)方程;
(Ⅱ)設(shè)點(diǎn)M為曲線(xiàn)C上的動(dòng)點(diǎn),求|MA|2+|MB|2取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)E:y2=x與圓M:(x﹣4)2+y2=r2(r>0)相交于A(yíng)、B、C、D四個(gè)點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線(xiàn)AC、BD的交點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c.設(shè)S為△ABC的面積,滿(mǎn)足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列敘述中正確的是( )
A.若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2﹣4ac≤0”
B.若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C.命題“對(duì)任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D.l是一條直線(xiàn),α,β是兩個(gè)不同的平面,若l⊥α,l⊥β,則α∥β
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰梯形ABCD中,AB∥DC、CD=2AB=4,∠A= ,向量 、 滿(mǎn)足 =2 , =2 + ,則下列式子不正確的是( )
A.| |=2
B.|2 |=2
C.2 =﹣2
D. =1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關(guān)于點(diǎn)D的說(shuō)法正確的是( )
甲:點(diǎn)D在第一象限
乙:點(diǎn)D與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱(chēng)
丙:點(diǎn)D的坐標(biāo)是(﹣2,1)
丁:點(diǎn)D與原點(diǎn)距離是 .
A.甲乙
B.丙丁
C.甲丁
D.乙丙
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com