P、Q、R、S四個(gè)小球分別從正方形ABCD的四個(gè)定點(diǎn)A、B、C、D點(diǎn)出發(fā),以同樣的速度分別沿AB、BC、CD、DA的方向滾動(dòng),其終點(diǎn)分別是B、C、D、A。

(1)不管滾動(dòng)多長(zhǎng)時(shí)間,求證:四邊形PQRS為正方形;
(2)連結(jié)對(duì)角線AC、BD、PR、SQ,你發(fā)現(xiàn)四條對(duì)角線有何關(guān)系?
(3)根據(jù)此圖,若有四個(gè)全等的直角三角形,你能否拼成一個(gè)正方形?若這個(gè)三角形直角邊為a、b,斜邊問c,你能否根據(jù)面積推導(dǎo)出勾股定理?
(1)見解析(2)四條對(duì)角線相交于一點(diǎn),且互相平分(3)能拼成一個(gè)正方形,見解析
(1)四個(gè)動(dòng)點(diǎn),P、Q、E、F分別從正方形ABCD的頂點(diǎn)A、B、C、D同時(shí)出發(fā),沿著AB、BC、CD、DA以同樣速度向B、C、D、A移動(dòng)可得AP=BQ=CF=DS,PB=QC=FD=SA.
可得△APS≌△BQP≌△CFQ≌△DFS,
得PQ=QF=FS=SP.
∠SPA=∠PQB.
又∠PQB+∠QPB=90°,
所以∠FPA+∠QPB=90°,∠FPQ=90°.
所以PQEF為正方形.(3分)
(2)四條對(duì)角線相交于一點(diǎn),且互相平分.(1分)
(3)能拼成一個(gè)正方形.用面積的方法來證明
直角邊分別是a,b.斜邊是c,
整個(gè)大正方形的面積應(yīng)該是(a+b)2
而一個(gè)一個(gè)進(jìn)行分解計(jì)算,4個(gè)小三角形的面積是4×ab=2ab.
中間的正方形面積是c2
則(a+b)2=2ab+c2,分解開就可以得到a2+b2=c2.(4分)
(1)可先證明△APF≌△BQP≌△CEQ≌△DFE,得PQ=QE=EF=FP;再證∠FPQ=90°;
(2)用面積的方法來證明,拼出的大正方形的面積,既可以用正方形面積公式求得,也可以用中間四個(gè)小三角形和小正方形的面積和來表示,列出相等關(guān)系,即可求證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在四邊形ABCD中,AC = BD,AC與BD交于點(diǎn)O,∠DOC = 60°.

(1)當(dāng)四邊形ABCD是平行四邊形時(shí)(如圖1),證明AB + CD = AC;
(2)當(dāng)四邊形ABCD是梯形時(shí)(如圖2),AB∥CD,線段AB、CD和線段AC之間的數(shù)量關(guān)系是_____________________________;
(3)如圖3,四邊形ABCD中,AB與CD不平行,結(jié)論AB + CD = AC是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)0,在BC上取BE=BO,連結(jié)AE,OE.若∠BOE
=75°,則∠CAE的度數(shù)等于( ▲ ).

A. 30°         B.45°           C.20°         D.15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的邊長(zhǎng)為2cm,∠DAB=60°.點(diǎn)P從A點(diǎn)出發(fā),以cm/s的速度,沿AC向C作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動(dòng).當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)當(dāng)P異于A.C時(shí),請(qǐng)說明PQ∥BC;
(2)以P為圓心、PQ長(zhǎng)為半徑作圓,請(qǐng)問:在整個(gè)運(yùn)動(dòng)過程中,t為怎樣的值時(shí),⊙P與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

從一般到特殊是一種重要的數(shù)學(xué)思想,右圖通過類比的方法展現(xiàn)了認(rèn)識(shí)三角形與平行四邊形圖形特征的過程,你認(rèn)為“?”處的圖形名稱是               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形中,,、分別是兩底的中點(diǎn),連結(jié),若,求的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為60°,則菱形較短的對(duì)角線長(zhǎng)是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形ABCD是邊長(zhǎng)為2的正方形,以對(duì)角線BD為邊作正三角形BDE,過E作DA 的延長(zhǎng)線的垂線EF,垂足為F。

(1)找出圖中與EF相等的線段,并證明你的結(jié)論;
(2)求AF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,依次連結(jié)第一個(gè)正方形各邊的中點(diǎn)得到第二個(gè)正方形,再依次連結(jié)第二個(gè)正方形各邊的中點(diǎn)得到第三個(gè)正方形,按此方法繼續(xù)下去。若第一個(gè)正方形邊長(zhǎng)為1,則第n個(gè)正方形的面積是      .

查看答案和解析>>

同步練習(xí)冊(cè)答案