【題目】在一次數(shù)學課上,李老師出示一道開放題,讓同學們依據(jù)已知條件寫出正確結論,具體如下:如圖,直線與雙曲線相交于,兩點,過點和分別作軸和軸的垂線,垂足分別為,,連接,,,直線與軸和軸分別交于點,.若點坐標,請寫出正確結論.聰明的強強很快寫出了四個結論,其中不正確的結論是( )
A.B.
C.D.
科目:初中數(shù)學 來源: 題型:
【題目】問題探究,
(1)如圖①,在矩形ABCD中,AB=2AD,P為CD邊上的中點,試比較∠APB和∠ADB的大小關系,并說明理由;
(2)如圖②,在正方形ABCD中,P為CD上任意一點,試問當P點位于何處時∠APB最大?并說明理由;
問題解決
(3)某兒童游樂場的平面圖如圖③所示,場所工作人員想在OD邊上點P處安裝監(jiān)控裝置,用來監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC=60°,OA=400米,AB=200米,問在OD邊上是否存在一點P,使得∠APB最大,若存在,請求出此時OP的長和∠APB的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】龍人文教用品商店欲購進、兩種筆記本,用160元購進的種筆記本與用240元購進的種筆記本數(shù)量相同,每本種筆記本的進價比每本種筆記本的進價貴10元.
(1)求、兩種筆記本每本的進價分別為多少元?
(2)若該商店準備購進、兩種筆記本共100本,且購買這兩種筆記本的總價不超過2650元,則至少購進種筆記本多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為⊙的直徑,,為圓上的兩點,,弦,相交于點,
(1)求證:
(2)若,,求⊙的半徑;
(3)在(2)的條件下,過點作⊙的切線,交的延長線于點,過點作交⊙于, 兩點(點在線段上),求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB、AC分別為⊙O的直徑和弦,D為的中點,DE⊥AC于E,DE=6,AC=16.
(1)求證:DE是⊙O的切線.
(2)求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀新知
一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個非零常數(shù),這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母表示().
即:在數(shù)列,,,…,.(為正整數(shù))中,若,,…,則數(shù)列,,,…,.(為正整數(shù))叫做等比數(shù)列.其中叫數(shù)列的首項,叫第二項,…,叫第項,叫做數(shù)列的公比.
例如:數(shù)列1,2,4,8,16,…是等比數(shù)列,公比.
計算:求等比數(shù)列1,3,,,…,的和.
解:令,則.
因此.所以.
即.
學以致用
(1)選擇題:下列數(shù)列屬于等比數(shù)列的是( )
A.1,2,3,4,5 B.2,6,18,21,63
C.56,28,14,7, D.-11,22,-33,44,-55
(2)填空題:已知數(shù)列,,,…,是公比為4的等比數(shù)列,若它的首項,則它的第項等于_________.
(3)解答題:求等比數(shù)列1,5,,,…前2021項的和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與直線都經過,兩點,該拋物線的頂點為.
(1)求拋物線和直線的解析式;
(2)設點是直線下方拋物線上的一動點,求面積的最大值,并求面積最大時,點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求作圖,不要求寫作法,但要保留作圖痕跡.
(1)如圖1,A為圓E上一點,請用直尺(不帶刻度)和圓規(guī)作出圓內接正方形;
(2)我們知道,三角形具有性質,三邊的垂直平分線相交于同一點,三條角平分線相交于一點,三條中線相交于一點,事實上,三角形還具有性質:三條高交于同一點,請運用上述性質,只用直尺(不帶刻度)作圖:
①如圖2,在□ABCD中,E為CD的中點,作BC的中點F;
②圖3,在由小正方形組成的網格中,的頂點都在小正方形的頂點上,作△ABC的高AH
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,ABC是等腰直角三角形,∠B=90°,點B的坐標為(1,2).反比例函數(shù)的圖象經過點C,一次函數(shù)y=ax+b的圖象經A,C兩點.
(1)求反比例函數(shù)和一次函數(shù)的關系式;
(2)直接寫出不等式組0<ax+b≤的解集.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com