【題目】如圖,在矩形OABC中,OA=3,OC=2,點F是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= 的圖象與BC邊交于點E.
(1)當(dāng)F為AB的中點時,求該函數(shù)的解析式;
(2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?

【答案】
(1)解:∵在矩形OABC中,OA=3,OC=2,

∴B(3,2),

∵F為AB的中點,

∴F(3,1),

∵點F在反比例函數(shù)y= 的圖象上,

∴k=3,

∴該函數(shù)的解析式為y=


(2)解:由題意知E,F(xiàn)兩點坐標(biāo)分別為E( ,2),F(xiàn)(3, ),

∴SEFA= AFBE= × k(3﹣ k),

= k﹣ k2

=﹣ (k2﹣6k+9﹣9)

=﹣ (k﹣3)2+

當(dāng)k=3時,S有最大值.

S最大值=


【解析】(1)當(dāng)F為AB的中點時,點F的坐標(biāo)為(3,1),由此代入求得函數(shù)解析式即可;(2)根據(jù)圖中的點的坐標(biāo)表示出三角形的面積,得到關(guān)于k的二次函數(shù),利用二次函數(shù)求出最值即可.
【考點精析】本題主要考查了比例系數(shù)k的幾何意義的相關(guān)知識點,需要掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓周角∠BAC=55°,分別過B,C兩點作⊙O的切線,兩切線相交于點P,則∠BPC=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為P(4,﹣4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON,

(1)求該二次函數(shù)的關(guān)系式;
(2)若點A的坐標(biāo)是(6,﹣3),求△ANO的面積;
(3)若點A在對稱軸l右側(cè)的二次函數(shù)圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請直接寫出與點B關(guān)于坐標(biāo)原點O的對稱點B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°.畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,且BC=2,則AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1 , 再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2 , …,如此進(jìn)行下去,得到四邊形AnBnCnDn . 下列結(jié)論正確的有(
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長是 ,
④四邊形AnBnCnDn的面積是

A.①②③
B.②③④
C.①②
D.②③

查看答案和解析>>

同步練習(xí)冊答案